时间:2023-06-20 18:44:03
类别:说课稿一等奖
实际问题与二元一次方程说课稿一等奖
各位领导、老师你们好!今天我要为大家讲的课题是人教版七年级(下)第八章第三节《实际问题与二元一次方程》的第一课时。首先,我对本节教材进行一些分析:
一、教材分析:
1、教材所处的地位和作用:
本节内容在全书及章节的地位是:《实际问题与二元一次方程》是数学教材七年级(下)第八章第三节内容。在学生已学习了解二元一次方程组的一般步骤的基础上,进一步以“探究”的形式讨论如何用二元一次方程组解决实际问题。以方程组为工具分析问题、解决问题(即建立方程模型)是全章的重点,同时也是难点。本节内容一方面通过更加贴近实际生活的问题,进一步突出方程这种数学模型的应用具有广泛性和有效性;另一方面使学生能在更加贴近实际生活的问题情境中运用所学数学知识,使分析问题和解决问题的能力、创新精神和实践意识在更高层次上得到提高。可以说本节是二元一次方程组应用的延伸与拓广。
2、学情分析:
七年级学生刚刚跨入少年期,理性思维的发展还很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。于是我根据学生和初一上下册教材衔接的特点设计了这节课。
二、教学方法与教学手段:
(1)教法分析:
基于本节课内容的特点和七年级学生的心理特征,在教学中应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,设计必要的铺垫,不要代替他们思考,不要过早给出答案。鼓励探究多种不同的分析问题和解决问题的方法,使探究过程活跃起来,在这样的氛围中可以更好地激发学生积极思维,得到更大收获。
(2)学法分析:
教学过程是师生互相交流的过程,教师起引导作用,学生在教师的启发下充分发挥主体性作用。七年级的学生,从认知的特点来看,学生爱问好动、求知欲强,想象力丰富,对实际问题有着浓厚的兴趣,他们希望得到充分的展示和表现,因此,在学习上,应充分发挥学生在教学中的主体能动作用,让学生自己通过讨论和交流得到答案,激发学习兴趣,培养应用意识和发散思维。
三、教学过程及教案设计
教学目标
1经历用方程组解决实际问题的过程,体会方程组是刻画现实世界中含有多个未知数的问题的有效数学模型;
2能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;
3学会比较估算与精确计算以及检验方程组的解是否符合题意并正确作答;
4培养分析、解决问题的能力,体会二元一次方程组的应用价值,感受数学文化。
教学难点确定解题策略,比较估算与精确计算。
知识重点以方程组为工具分析,解决含有多个未知数的实际问题。
板书设计
8.3再探实际问题与二元一次方程
(1)实际问题设未知数列方程组数学问题(二元一次方程组)
教学过程(师生活动)
设计理念估时创设情境前面我们结合实际问题,讨论了用方程组表示问题中的条件以及如何解方程组.本节我们继续探究如何用方程组解决实际问题.
(出示问题)养牛场原有30只母牛和15只小牛,一天约需用饲料675 kg;一周后又购进12只母牛和5只小牛,这时一天约需用饲料940 kg。饲养员李大叔估计平均每只母牛1天约需用饲料18~20 kg,每只小牛1天约需用饲料7~8 kg。你能否通过计算检验他的估计?
开门见山,直接提出本节学习目标,强化本章的中心问题.以学生身边的实际问题展开讨论,突出数学与现实的联系.探索分析解决问题学生思考、讨论.判断李大叔的估计是否正确的方法有两种:
一、先假设李大叔的估计正确,再根据问题中给定的数量关系来检验.
二、根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确.
学生在比较探究后发现用方法二较简便.
设问1:如果选择方法二,如何计算平均每只母牛和每只小牛1天各约需用饲料量?(有前面几节的知识准备,学生可以回答)列方程组求解.主要思路:引导学生探寻解题思路,并对各种方法进行比较,方法一主要是要估算的运用,而方法二是方程思想的应用。实际应用
实际问题
数学问题二元一次方程组设未知数列方程组学生先独立思考,然后师生共同讨论解题过程.
解:设平均每只母牛和每只小牛1天各约需用饲料xkg和ykg。
找出相等关系列方程组解这个方程组,得这就是说,平均每只母牛和每只小牛1天各约需用饲料20kg和5kg。饲养员李大叔对母牛的食量估计正确,对小牛的食量估计不正确.
分步到位,渗透模型化的.思想。规范解题步骤,培养学生有条理地思考、表达的习惯。
让学生认识到检验的重要性,并学会正确作答。
拓广探索比较分析
设问2:以上问题还能列出不同的方程组吗?结果是否一致?
个别学生可能会列出如下方程组但结果一致
.比较分析,加深对方程组的认识。
课堂练习
1、《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食.树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的1/3;若从树上飞下去一只,则树上、树下的鸽子就一样多了.”你知道树上、树下各有多少只鸽子吗?
2、悟空顺风探妖踪,千里只行四分钟。归时四分行六百,风速多少才称雄?顺风速度=悟空行走速度+风速逆风速度=悟空行走速度风速
出示古典名题
一方面及时巩固用方程组解决实际问题的过程,另一方面让学生感受数学文化。
小结与作业小结提高
提问:通过这节课的学习,你知道用方程组解决实际问题有哪些步骤?
学生思考后回答、整理:
①设未知数.②找相等关系.③列方程组.④检验并作答.
以问题的形式出现,引导学生思考、交流,梳理所学知识,建立起符合自身认识特点的知识结构.训练口头表达能力,养成及时归纳总结的良好学习习惯.
布置作业
1、必做题:教科书116页习题8.3第1(1)3、5题。
2、选做题:教科书112页习题.8.3第8题。教后反思
实际问题与二元一次方程组是继二元一次方程组的解法之后的一课,重点是应用方程解决问题,下面我就从教材,教学目标,教学重、难点,教法,作业安排五个方面来说一下本节课怎么讲可以使问题得到更好地解决.
一、说教材
本节课讲的是七年级《数学》下册第八章第三节的第一课时——用二元一次方程组解决实际问题,在学生已经熟练掌握二元一次方程组的解法的基础上,通过对实际问题审,设,列,解,答;经历建立二元一次方程组这种数学模型解决实际问题的过程,体验用方程组解决实际问题的一般方法,进一步提高分析问题与解决问题的能力,进而增强数学应用的意识。
二、说教学目标
(知识与技能)
1.经历用方程组解决实际问题的过程,体会方程组是刻画现实世界中含有多个未知数的问题的有效数学模型;
2.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;
(过程与方法)
学会比较估算与精确计算以及检验方程组的解是否符合题意并正确作答
(情感态度与价值观)
培养分析、解决问题的能力,体会二元一次方程组的应用价值,感受数学文化。
三、说教学重、难点
(教学重点)以方程组为工具分析,解决含有多个未知数的实际问题
(教学难点)确定解题策略,比较估算与精确计算
四、说教法
<一>教法设计:回顾练习(5分钟),自主探究(5分钟),小组交流(5分钟),成果展示(10分钟),疑难点拨(10分钟),课堂运用(5分钟),小结发言(5分钟)。
<二>教法设计意图
1.回顾练习
内容:
用适当的方法解方程组
(2)既是方程的解,又是方程的解是( )
A.B.C.D.设计意图:巩固二元一次方程组的解法
2.自主探究
出示问题:养牛场原有30只母牛和15只小牛,一天约需用饲料675kg;一周后又购进12只母牛和5只小牛,这时一天约需用饲料940kg.饲养员李大叔估计平均每只母牛1天约需用饲料18~20kg,每只小牛1天约需用饲料7~8kg.你能否通过计算检验他的估计?
为了解决这个问题,请认真看P.105页的内容.
思考:判断李大叔的估计是否正确的方法有2种:
(1)先假设李大叔的估计正确,再根据问题中给定的数量关系来检验.
(2)根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确.
5分钟后谁能帮助李大叔解决问题,并能解决简单的实际问题?
学生按照自学指导看书,教师巡视,确保人人学得紧张高效.
设计意图:引导学生独立思考,培养自主学习的.能力
3.小组交流
组内成员讨论各自的探究成果,对不足和错误进行补充与更正
最终提炼出最佳方法.
设计意图:培养合作学习的习惯
4.成果展示
各组在黑板上展示解题的方法(也就是设,列的步骤),然后由发言人讲解详细的做法.
设计意图:培养分析与解决问题能力
5.疑难点拨
(1)根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量——列出方程组
(2)方法的多样——2种解法
设计意图:突破难点,打开思考路线,指导规范解题
6.课堂运用
实验中学组织爱心捐款支援灾区活动,九年级一班55名同学共捐款1180元,捐款情况见下表.表中捐款10元和20元的人数不小心被墨水污染已经看不清楚,请你帮助确定表中的数据.
7设计意图:巩固解决实际问题的方法与步骤
7.小结发言
谈出本节课的收获与困惑
设计意图:通过各小组的小结,从审,设,列,解,答五步规范实际问题的解法.
五、说作业安排
作业安排一定要按照学生的层次性分类定量的进行(我一般将学生分成三类:特优生,优秀生,待优生)
设计意图:从不同层次有效的提高学生对知识的掌握程度
一、教材分析
1、教材的地位
二元一次方程组是最简单的多元(未知数的个数不止一个)方程组,通过对它的学习,可以了解的多元一次方程组的概念和解法的基本思路。一元一次方程的知识是学习二元一次方程组的基础。本节课是在七年级上册已有的“一元一次方程”的基础上进一步讨论方程(组),为学生初中阶段学好必备的代数,几何的基础与基本技能,解决实际问题打下基础,同时提高学生能力,培养他们对数学的兴趣,以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。
2、教学目标
使学生掌握二元一次方程、二元一次方程组的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。使学生了解二元一次方程、二元一次方程组的解的含义,会检验一对数是不是它们的解。
3、重点、难点
重点:是学生认识到一对数必须同时满足两个二元一次方程,才是相应的二元一次方程组的解。掌握检验一对数是否是某个二元一次方程的解的书写格式。
难点:理解二元一次方程组的解的含义。
二、教法
启发诱导学生自主探究、充分发挥学生的主体地位、借助多媒体增加课堂容量。
三、学法
“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。
四、教学过程
1、教与学互动设计:通过“篮球比赛积分问题”让学生感受到用二元一次方程组能够很好的刻画问题中的数量关系,为二元一次方程和二元一次方程组做准备。通过小组讨论的方法,来调动学生学习的积极性。
2、合作交流,解读探究:通过上述的两个方程对新的知识让学生进行讨论交流。呼应新课标理念中让学生“动”起来,教师引导、学生自主学习的理念,进行新课的学习。
3、课堂练习:用幻灯片展示的习题,学生通过习题巩固本节课知识,更加充分的理解二元一次方程组的相关内容。
4、课堂小结及布置作业:通过小结及做习题反馈学生对本节课的收获。
五、教学反思
生命在活动中丰富,为孩子的一生幸福奠定基础,是活动教学的终极价值追求;课堂在活动中精彩,强调通过师生之间丰富多彩的主体活动“唤醒”沉睡的课堂,实现课堂教学的重建;学生在活动中发展,教师在活动中成长。由于我能力有限,还请各位领导、老师和同学批评指正。
附:板书设计
8、1二元一次方程组
xy=222xy=40
二元一次方程二元一次方程组
二元一次方程的解二元一次方程组的解
一、教材分析
1、教材的地位与作用
二元一次方程组是新人教版七年级数学(下)第八章第一节的内容。在此之前,学生已学习了一元一次方程,这为过渡到本节的学习起着铺垫作用。本节内容主要学习和二元一次方程组有关的四个概念。本节内容既是前面知识的深化和应用,又是今后用二元一次方程组解决生活中的实际问题的预备知识,占据重要的地位,是学生新的方程建模的基础课,为今后学习一次函数以及其他学科(如:物理)的学习奠定基础,同时建模的思想方法对学生今后的发展有引导作用,因此本节课具有承上启下的作用。
2、教学目标
[知识技能]
掌握二元一次方程、二元一次方程组及它们的解的概念,通过实例认识二元一次方程和二元一次方程组也是反映数量关系的重要数学模型。
[数学思考]
体会实际问题中二元一次方程组是反映现实世界多个量之间相等关系的一种有效的数学模型,能感受二元一次方程(组)的重要作用。
[解决问题]
通过对本节知识点的学习,提高分析问题、解决问题和逻辑思维能力。
[情感态度]
引导学生对情境问题的观察、思考,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
3、教学重点与难点
按照《课程标准》的要求,根据上述地位与作用的分析及教学目标,本节课中相关概念的掌握是教学重点。
通过学生亲身体验,理解二元一次方程(组)解的个数的确定。
二、学情分析
七年级学生思维活跃,好奇心强,希望平等交流研讨,厌烦空洞的说教。因此,在教学过程中,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,激发他们的兴趣。一方面通过学案与课件,使他们的注意力始终集中在课堂上;另一方面创造条件和机会,让学生自主练习,合作交流,培养学生学习的主动性、与人合作的精神,激发学生的兴趣和求知欲,感受成功的乐趣。
三、教法与学法
1、教法
数学课程标准明确指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。所以我在教学中不只传授知识,更要激发学生的创造思维,引导学生探究,发现结论的方法。正所谓“教是为了不教”。所以我采用引导发现法为主,情景问答法、讨论法、活动竞赛法、利用多媒体课件辅助教学等完成本节的教学,真正做到教师的主导地位。
2、学法
学生是学习的主体,所以本节教学中,引导学生自主探究、归纳总结,运用自主探索与合作交流开拓自己的创造思维。这样调动学生的积极性,激发学生兴趣,使学生由被动学习变为积极主动的探究,这也符合数学的直观性和形象性。
四、教学过程与课堂活动
为了达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为五个环节:
1、创设情境,引入概念
NBA篮球联赛情景再现,利用世界男篮亚裔球星林书豪激励学生相信自已能够创造奇迹的励志教育,感受数学来源于生活,调动学生顺利引入新课。
2、观察归纳,形成概念
概念的教学,不纠缠于其语言本身,而是通过类比整合形成新的概念。由于学生对一元一次方程概念已经很了解,我主要采用了类比的方法,弱化概念的教学,强化对概念的正确理解,通过学案与课件相结合的方式,以题组形式分层渐进式训练,让学生明晰概念,巩固概念,强化概念,提升能力。
3、拓展延伸,深入概念
知识的掌握,能力的提升是一个不断循序上升的过程,而教学过程更是一个生动活,主动和富有个性的过程,让学生认真听讲、积极思考,动脑动口,自主探索,合作交流。
4、当堂检测,强化概念
通过课堂随机选题的形式答题,通过合作小组交流,全班展示交流,使学生互相学习、互相促进、互相竞争,将小组的认知成果转化为全班同学的共同认知成果,从而营造宽松、民主、竞争、快乐的学习氛围,让学生体验到学习的快乐,成功的喜悦,从而充分体现数学教学主要是学生数学活动教学的基本理念。
5、反思小结,回归概念
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,培养学生形成完整的知识体系,养成及时反思的习惯。
五、教后反思
美国国家研究委员会在《人人关心数学教育的未来》的报告中指出“没有一个人能教好数学,好的教师不是在教数学,而是在激发学生自已去学数学”。只有学生通过自已的思考建立对数学的理解力,才能真正的学好数学。本节课课,我致力于让学生自已去发现数学,研究数学,加强数学思想、方法及科学研究方法的指导,引导学生不断从“学会数学”到“会学数学”,但教无止境,课堂仍然留有遗憾,在今后的教学中,我将从这样的三个方面加强对课堂的研究:一是加强对学法研究、学情研究,让教学方式与内容更符合学生认知规律,更贴近学生实际;二是重视学生课堂的学习感受,营造民主、开放、合作、竞争的学习氛围;;三是提高教学机智、不断创新优化教学方法,科学、合理、灵活地处理课堂上生成的问题。
一、说教材分析
1、教材的地位和作用
二元一次方程组安排在学生已经学过整式和一元一次方程的知识之后,它是学习三元一次方程组的重要基础,同时也是以后学习函数、平面解析几何等知识以及物理、化学中的运算等不可缺少的工具。对于学生理解并掌握方程思想、转化思想、消元法等重要的数学思想方法有着重要的意义。本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。教材的编写目的是通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程,体会代数的一些特点和优越性;理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础、
2、教学目标
通过对新课程标准的研究与学习,结合我校学生的实际情况,我把本节课的三维教学目标确定如下:
(一)知识与技能目标:
1、会用加减消元法解简单的二元一次方程组。
2、理解加减消元法的基本思想,体会化未知为已知的化归思想方法。
(二)过程与方法目标:
通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。
(三)情感态度及价值观:
通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。
3、教学重点、难点:
由于七年级的学生年龄较小,在学习解二元一次方程组的过程中容易进行简单的模仿,往往不注意方程组解法的形成过程更无法真正理解消元的思想方法。而大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下
重点:用加减法解二元一次方程组。
难点:灵活运用加减消元法的技巧,把二元转化为一元
二、学情分析
七年级学生在自学中,通常能掌握表面知识,如具体的一个问题的解题过程,但学生在数学解题能力,运算能力,思维能力等各方面参差不齐,这也导至在学习中,特别是在自学中有的动力不够,有的更是缺乏探索精神,而在总结归纳中又缺乏合作的学习态度。在自学中能说出是什么怎么样,但又还探索不出为什么有什么联系。
三、说教法与学法
教法:利用导学提纲自主互动学习,根据学情教师适时点拨、归纳、升华。
学法:本节课的教学我始终把学生作为学习的主人,不断激发他们的学习兴趣,引导学生在自主探究、合作交流、小组积分相结合的学习方式下获得成功的体验。
四、教学环境及资源准备
教学环境:多媒体教室
资源准备:导学提纲,多媒体课件制作。
一、说教材分析
1、教材的地位和作用
二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。
2、教学目标
知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。
能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。
情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。
3、重点、难点
重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。
难点:在实际生活中二元一次方程组的应用。
二、教法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。
三、学法
“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。
四、教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)复习旧知,温故知新
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分、负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2)创设情境,提出问题
这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数,
胜场积分+负场积分=总积分。
这两个条件可以用方程
x+y=22
2x+y=40
表示:
上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程、
把两个方程合在一起,写成
x+y=22
2x+y=40
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
(3)发现问题,探求新知
满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。
一、说教材
首先谈谈我对教材的理解,《二元一次方程组》是人教版初中数学七年级下册第八章第一节的内容,本节课的内容是二元一次方程组的概念以及二元一次方程组的解。在此之前学习了一元一次方程和解方程的步骤,为本节课打下了良好的基础。学了本节课为后面的解二元一次方程的方法做下铺垫。因此本节课有着承上启下的作用。
二、说学情
接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,与类比学习能力。而且在生活中也为本节课积累了很多经验。所以,学生对于二元一次方程组概念理解较为容易,找出方程组的解,相对来说有难度,需要教师多引导。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
掌握二元一次方程与二元一次方程组的概念,并了解它们的解,能正确地找出二元一次方程组的解。
(二)过程与方法
通过类比学习、自主探究、合作交流的过程,提升类比学习的能力、培养探究的意识。
(三)情感态度价值观
感受数学与生活的密切联系,培养学习数学的兴趣。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:二元一次方程与二元一次方程组的'概念以及方程与方程组的解。教学难点是:二元一次方程组解的探究。
五、说教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,我采用情境导入:展示篮球联赛图片,给出评分标准。并提出问题:这个队伍胜负场数分别是多少?
根据学生回答追问:用列方程解决问题,题中有几个未知数呢?从而引出本节课的课题《二元一次方程组》
这样设计的好处是:利用篮球联赛的图片导入,并讲清楚评分规则,不仅可以吸引学生探索的兴趣,还可以培养学生的数学应用意识。
(二)新知探索
接下来是教学中最重要的新知探索环节,主要通过三个活动展开学习。
活动一:学生尝试列方程解决问题,看看在列方程过程中遇到了什么困难?同桌之间互相交流。
学生分析题意,发现有未知数,可以使用列方程的方法解决问题。当让学生自己动手练习时,他们会发现,胜负的场数都是未知的。
此时教师可以引导学生发现和思考:要求的是两个未知数,能不能根据题意直接设两个未知数,使列方程变得容易呢?学生在这样的提示下会有一定的想法,但对于列出二元一次方程组来说还是比较困难的。
教师板书表格示意图,引导学生通过题意,发现题干中包含的必须同时满足的条件,得到两组关系式并设出未知数完成表格。
活动二:学生观察两个方程特点,与一元一次方程有什么不同?并试着下定义。
在这里学生通过类比学习,能够归纳出二元一次方程的概念:每个方程都含有两个未知数,并且含有未知数的项的次数都是1。了解了二元一次方程后,对于二元一次方程组的概念就可以很好的展开了,对于本题列了两个二元一次方程解决问题,像这样的方程组叫做二元一次方程组。
师生共同总结出二元一次方程与二元一次方程组的定义。
列出了二元一次方程组,要解决篮球联赛的问题,就要求出方程组的解,接下来进行第三个活动。
活动三:完成表格,以二元一次方程组中的一个方程为例。小组合作,找出几组整数解,并观察哪一组解也符合另一个方程。
在这里解二元一次方程组,可以先将问题简单化,先研究一个方程的解,找到几组解后,再看哪一组解也符合第二个方程。也就是两个方程的公共解。教师给出表格,小组在进行合作时,教师应引导学生思考结合题意,两个未知数应取正整数。填完表格后,师生共同总结出二元一次方程解的定义。
教师继续追问,哪一组的值也满足第二个方程。师生共同总结出什么叫做二元一次方程组的解。
得到方程组的解,回归情景得出实际问题的答案。
设计意图:通过三个活动展开本节课,不仅符合新课改的理念:学生是学习的主体,教师是教学活动中的组织者、引导者、合作者,还能通过小组活动、类比学习等活动丰富课堂。
(三)课堂练习
接下来是巩固提高环节。
练习:对下面的问题,列出二元一次方程组,并根据问题的实际意义,找出问题的解。
加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件。现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、第二道工序所完成的件数相等?
设计这道题可以让学生感受数学与生活的密切联系,学以致用。教师可以及时掌握学生本节课的学习情况,给予补充纠正。
(四)小结作业
在课程的最后我会提问:今天有什么收获?
引导学生回顾:二元一次方程组的定义与二元一次方程组的解。
本节课的课后作业我设计为:
思考除了用列表找二元一次方程组的解,还有什么方法能找出解,能不能将它变成我们熟悉的一元一次方程求解。
设计意图:本节课学生通过列表观察得到了方程组的解,作业设计为让学生思考解二元一次方程组的方法,并提示能不能把它变成熟悉的一元一次方程求解,为下节课的学习做下铺垫。
七、说板书设计
一、内容分析
1、1学习任务分析:二元一次方程、二元一次方程的解、二元一次方程组、二元一次方程组的解,是本节课的核心概念。它既是一元一次方程的延续,又是三元一次方程组的基础。
1、2学生情况分析:就方程而言,初一学生已有一元一次方程的有关知识。所以本节课将引导学生自己发现新的方程并尝试通过类比“发现”有关新概念,使学生逐步建立方程的知识体系。但对学生来说二元一次方程组的解的表达形式是陌生的,对他们来说正确写出解并理解其含义具有一定的难度。
二、学习目标设计
知识目标:使学生掌握二元一次方程、二元一次方程的解、二元一次方程组、二元一次方程组的解的概念。能辨别那些是二元一次方程(组),并能正确的写出他们的解
能力目标:通过尝试命名新方程、尝试“发明”有关概念,培养学生知识移的能力,并从初一开始养成建立知识体系的习惯。通过学生自己设计问题,充分发挥其主体性,培养创新意识。
情感目标:体验数学发现中的快乐,激发学生自主学习的乐趣。
重点二元一次方程(组)及二元一次方程(组)的解的概念。
难点理解、判断二元一次方程(组)的解,并能用正确的形式表达二元一次方程(组)的解。
三、课堂结构设计
动手实验,引导学生发现问题(课题)、尝试命名和定义
练习反馈
结合实验,引导学生设计问题并发现方程组
练习反馈
引导学生在小结巩固中更好的理解概念
分层练习,引导学生积极探索
回归实验,学生完善自己的设计
四、教学媒体设计
充分利用PPT演示文稿的高效性、板书的实效性和可留性以及事物演示的直观性,将它们有机结合,各取其长。
五、教学过程设计
5、1动手实验,引导学生发现问题(课题)、尝试命名和定义。
实验情境:请学生将手中40厘米长的绳子绷成一个长方形。(课前结已打好,所占长度忽略不计)
相互交流:学生相互交流所绷成的长方形是否完全相同,有何异同之处。
(异:各自的长和宽不同;同:周长都是40厘米。)得出实验结论:周长为40厘米的长方形有无数个。(同时借助多媒体演示实验过程与结论)
引出课题:如果宽设为x厘米,长设为y厘米,你能发现x和y的关系么?(x+y=20)。学生会感觉这个式子既熟悉又陌生。熟悉的是这是个方程,陌生的是它是什么方程。引导学生将它与已学的一元一次方程作比较,(未知数的个数不同),进而请学生尝试给这样的方程命名,并给出命名的理由。(二元一次方程)。引出课题。并且由学生仿照一元一次方程的定义尝试定义二元一次方程。
二元一次方程的解:请学生说出二元一次方程的解的定义,(使二元一次方程左右两边相等的两个未知数的值)。强调是两个未知数的值。
就x+y=20这个方程而言,它的解是多少呢?学生发现有无数个,
如x=1,y=19;x=2,y=18;通过设问x=1时,y还能取什么值?让学生理
解虽有无数个解,但x和y是相互制约的,所以前面要加,x=1这
y=19
一对值就是这个二元一次方程的一个解。并请学生规范的写出一些解。
这无数个解都适合这个长方形问题么?学生讨论后可得出,负数不行,小数可以,所以长方形问题仍然是无数个解,从而用方程解的知识解释了实验的结论。
最终用数学知识解释了实验的结论。
设计说明:实验与二元一次方程相对应,实验的结果与二元一次方程的无数个解相对应。每位学生都参与到实验中,用心感受x、y间的关系,激发探索数学知识的乐趣。并且这个实验将作为一条主线贯穿整个课堂。
学生自己发现、命名二元一次方程以及概念的知识基础是一元一次方程,知识迁移的要求不高,具有可行性。
练习1:下列哪些是二元一次方程,哪些不是?
①②
③④
学生回答,并紧扣定义说明理由。
设计说明:牢抓二元、一次、方程三个关键词,设计问题,及时巩固定义。
请学生小结一元一次方程和二元一次方程的区别和联系。
练习2:写出二元一次方程y-x=10的一些解。
设计说明:在讲解解的问题中有三个关键点:1、二元一次方程的解有无数个;2、每一个解由x和y这一对相互制约的值组成;3、解的书写格式。并通过练习反馈掌握情况。
5、2结合实验,引导学生设计问题并发现方程组。
5、2、1二元一次方程组的定义
周长为40厘米的长方形有无数个,若希望这道题的答案是一个而不是无数个,请学生想办法满足我的要求。(小组讨论)
从学生设计出的众多问题中选一个讲解,若加条件:长比宽长10厘米。
此时长y宽x需要同时满足x+y=20和y-x=10,如何在书写上体现“同时”呢?
x+y=20
前面加上,请学生给y-x=10命名。(二元一次方程组)并给出定义
像这样,把两个二元一次方程合在一起就组成了二元一次方程组。
设计说明:仍通过原来的实验,自然引出二元一次方程组。
练习3:下列方程组中是二元一次方程组的有
(1)(2)(3)(4)
学生分析前三个,对第(4)个展开讨论
把两个二元一次方程合在一起是二元一次方程组,但二元一次方程组不一
定都是这样,如第(4)个方程组中共有两个未知数,未知数的指数都是1,它也是二元一次方程组。(强调是方程组中的未知数共2个)
练习4:判断下列方程组是否是二元一次方程组:
x=2x+y=5
y=-12y-3z=1
设计意图:因为书上给出的定义是描述性定义,为了避免学生理解上产生偏差,特设计这一组练习,以强调所谓二元即指整个方程组中共含有两个未知数。
5、2、2二元一次方程组的解
研究方程组x+y=20的解。
y-x=10
在分别研究了这两个方程解的基础上,请学生对它们所组成方程组的解各抒己见,最终达成共识:把两个二元一次方程的公共解称为二元一次方程组的解。并发现找公共解麻烦,下课前告诉学生有快速求解的方法。
设计意图:激发学生的好奇心和探索欲望。
5、3学会小结,引导学生在小结巩固中更好的理解概念。
至此长方形问题圆满解决,满足这个条件的长方形只有一个:长15厘米,宽5厘米。在解决这个问题的过程中学了一些新的知识,二元一次方程,二元一次方程的解,二元一次方程组,二元一次方程组的解。
练习5:方程组的解是()
(强调公共解)
练习6:写一个解为的二元一次方程。
变:写一个解为的二元一次方程组。
练习7:就实验中的长方形问题,每位学生完整的写出设计的题目,并解答。
设计说明:练习5巩固二元一次方程组的解的定义;
练习6锻炼学生逆向思维的能力;
练习7由于在刚刚设计中只采纳了一位学生的设计,现在给大家展示自我的机会,并且通过这个问题巩固全课的知识,前后呼应。
5、4课后作业:
必做题:94页练习、95页1、2。
选做题:95页综合运用3、4;
探索解二元一次方程组的方法。
六、教学评价设计
考虑本节课概念多的特点,所以在每个概念的给出后都设立了一个小练习,以反馈学生的掌握情况,便于及时发现问题解决问题。在设置的练习中除了检查对基本知识的掌握,同时重视学生的思维训练,并通过开放题等培养学生的创新意识。
各位评委、老师大家好:
我说课的题目是《二元一次方程组的解法----代入消元法》,内容选自人教版九年义务教育七年级数学下册第八章第二节第一课时。
一、说教材
(一)地位和作用
本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。初中阶段要掌握的二元一次方程组的解法有代入消元法和加减消元两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排很少,不过这样也给了我们较大的发挥空间。
(二) 课程学习目标
1、会用代入法解二元一次方程组。
2、初步体会解二元一次方程组的基本思想——“消元”。
3、通过对方程中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养观察能力和体会化归的思想。
(三)教学重、难点:
用代入消元法解二元一次方程组 教学难点:探索如何用代入消元法解二元一次方程组,感受“消元”思想。
二、说教法
针对本节特点,在教学过程中采用自主探究、师友互助交流的教学方法,由教师提出明确问题,学生积极参思考与讨论探究、师友合作交流,进行总结,使学生从中获取知识。鉴于本节所学知识的特点,抽象教学、学生生搬硬套的学习方式将难取得理想效果,因此教师在引入课题时要利用好远程教育设施及资源创设情境,让学生去经历由具体问题抽象出方程组的过程。并让学生通过独立观察、师友合作交流来探讨怎样才能变“二元”为“一元”。然后利用单个二元一次方程的变形及时强化“代入”的本质。
三、说学法
本节学生在独立思考、自主探究中学习并对老师的问题展开有师友讨论与交流。如何用代入消元法将“二元”转化“一元”学生较难掌握,在提出消元思想后,应对具体的消元解法的过程进行归纳,让学生得到对代入法的基本步骤的概括,通过“把一个方程(必要时先做适当变形)代入另一个方程”实现消元。应注意引导学生认识到为什么要实施这样的步骤。把具体做法与消元结合,使学生明解其目的性。明确这样做的依据是等量代换。整个过程可以通过自主探究和师友合作来实现课程目标,此外,教学中,各个环节主要采用独学,对学,群学的方法,随堂练习时应引导学生通过自我反省小组评价来克服解题时的错误,必要时教师给予规范矫正。
四、说教学流程
(一)简单复习
学师学友面对面,学友说给学师听,什么是二元一次方程(组)?说完后两组师友展示给全班同学听
(二)自主学习:
出示学习目标:学生齐读一下,对本课学习有一个大体了解。
学生认真学习课本P91例题1上面的内容,并回答以下两个问题(电子白板出示)
1.什么叫消元思想 2.代入消元法
学习完成之后学生举手回答,教师总结。
(三)合作探究
电子白板出示问题:
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,保安族中学校队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
1.师友合作交流,探究新知
在上述问题中,除了用一元一次方程解答外,我们还可以设出两个未知数,列出二元一次方程组
学生活动:分别列出一元一次方程和二元一次方程组,
设胜的场数是x 则负的场数为22-x,列方程得 2x+(22-x)=40
设胜的场数是x,负的场数是y,列方程组得
x+y=22
2x+y=40
2.自主探究,师友讨论
那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?
3.学生归纳,教师作补充:
上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。
把下列方程写成用含x的式子表示y的形式
(1)2x-y=5(2)4x+3y-1=0
学生活动:尝试自主完成,教师纠正。思考:能否用含y的式子来表示x呢?
4、教师来说方法:(2)用代入法解方程组
x-y=3
3x-8y=14
思路点拨:先观察这个方程组中哪一项系数较小,发现中x的系数为1,这样可以确定消x较简单,首先用含y的代数式表示x,而后再代入消元。
解:由变形得 X=y+3
把代入,得3(y+3)-8y=14
解这个方程,得 y=-1
把y=-1代入,得X=2
所以这个方程组的解是 X=2
y=-1
如何检验得到的结果是否正确? 学生活动:口答检验。
总结步骤:变 代 求 写
(四)小试牛刀(给你一个展示的舞台)
解二元一次方程组
1、 2、
两名同学到黑板上板演,其他同学在练习本上认真做!(教师巡视学生)
完成后,教师总结:解二元一次方程组的方法步骤:
变 代 求 写
(五)归纳总结,知识回顾
1、通过这节课的学习活动,你有什么收获?
2、你认为在运用代入法解二元一次方程组时,应注意什么问题?
(六)布置作业
作业:中午:课本 第二题1、2小题
晚上:《作业与测试》。
各位评委、老师大家好:
我说课的题目是《二元一次方程组的解法----代入消元法》,内容选自人教版九年义务教育七年级数学下册第八章第二节第一课时。
一、说教材
(一)地位和作用
本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。初中阶段要掌握的二元一次方程组的解法有代入消元法和加减消元两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排很少,不过这样也给了我们一较大的发挥空间。
(二)课程目标
1、知识目标
(1)、了解解二元一次方程组的“消元”思想,体会学习数学中的“化未知为已知”,“化复杂为简单”的化归思想。
(2)、了解代入法的概念,掌握代入法的基本步骤。
(3)、会用代入法求二元一次方程组的解。
2、能力目标
培养学生动手操作、探索、观察、分析、划归获得数学思想的能力;培养学生转化独立获取知识的方法并解决问题的能力。
3、情感目标
(1)、在学生了解二元一次方程组的“消元”思想,从初步理解化“未知”为“已知和化复杂问题为简单问题的划归思想中,享受学习数学的兴趣、提高学习数学的信心。
(三)教学重点、难点
重点:用代入消元法解二元一次方程组。
难点:探索如何用代入消元法将“二元”转化为“一元”的过程。
二、说教法
针对本节特点,在教学过程中采用自主、探究、合作交流的教学方法,由教师提出明确问题,学生积极参与讨论探究、合作交流,进行总结,使学生从中获取知识。鉴于本节所学知识的特点,抽象教学、学生生搬硬套的学习方式将难取得理想效果,因此教师在引入课题时要合理创设问题情境,让学生去经历由具体问题抽象出方程组的过程。并让学生通过独立观察、合作交流来探讨怎样才能变“二元”为“一元”。然后利用单个二元一次方程的变形及时强化“代入”的本质。
三、说学法
本节学生在独立思考、自主探究中学习并对老师的问题展开讨论与交流。如何用代入消元法将“二元”转化为“一元”学生较难掌握,在提出消元思想后,应对具体的消元解法的过程进行归纳,让学生得到对代入法的基本步骤的概括,通过“把一个方程(必要时先做适当变形)代入另一个方程”实现消元。应注意引导学生认识到为什么要实施这样的步骤。把具体做法与消元结合,使学生明解其目的性。明确这样做的依据是等量代换。七年级的学生已经初步具备合作交流的能力。可以通过探究和合作来实现课程目标;此外,教学中,范例的讲解和随堂练习始终是学以对用的有效方法。随堂练习时应引导学生通过自我反省、小组评价来克服解题时的错误,必要时给与规范矫正。
四、说教学程序
本节课我将“自主、探究、合作、交流”运用到教学中,教学过程可以划分为以下几个环节:
1、引入新知:利用多媒体教学手段,创设情境,通过篮球比赛问题引入教学,情境活泼、自然。
2、探究新知:在篮球比赛问题中,首先可以用一元一次方程来解决实际问题,接着提出问题:能否设出两个未知数,列出两个方程组成方程组呢?(学生独立思考后分组探究讨论)。在学生得出正确的方程组之后提出问题:怎样解这个方程组呢?(学生分组讨论,教师加以适当的引导),各组派代表得出自己的结论,教师适时引导“消元”思想,对消元解法的过程予以归纳。
3、运用新知:在得出“代入消元”解二元一次方程组后,应用“代入消元法”解决实际问题,在学生解题过程中着重强调、矫正、理清思路和步骤。然后师生一起“解后思”:在解题时应注意什么?在随堂练习时教师关键是反馈矫正、积极评价。
4、教学小结,知识回顾:让学生畅所欲言谈本节课的得失,感到困惑和疑难的地方、解题的关键和步骤等。教师在学生发言的基础上再进行提炼:解二元一次方程组的主要思路是“消元”;解二元一次方程组的一般步骤是:“一变、二代、三求、四代、五定”。
5、课外作业。为进一步巩固知识,布置适当的、具有代表性的作业。
五、说应用
《数学课程标准》指出:“数学来源于生活”“数学服务于生活”“数学问题要生活化”,“让数学走进生活”已是一种全新的教育理念,它有利于实现“不同人在数学上得到不同的发展。”为此,在数学课堂教学中,教师要善于创设教学情境,为学生创造一个轻松、愉悦的学习氛围,集中学生的注意力,把学生思绪带进特定的学习情境中去,激发他们浓厚的学习兴趣和强烈的求知欲望。同时,教师设计教学活动时,要充分利用现代远程教育资源结合本班的实际和知识水平,精心为学生创设贴进生活的学习情境,让学生有身临其境的感觉,从而激发学生的学习兴趣和求知欲。
总之,在数学教学中合理运用多媒体教学平台,能极大地方便教学,减轻教师的负担,更好地优化课堂结构,促进教学质量的提高。学生的学习方式不再单一,学习兴趣明显提高,能自主地学习,真正成为学习的主体。
各位评委、老师:
大家好!
我说课的题目是《二元一次方程组的解法——代入消元法》,内容选自人教版九年义务教育七年级数学下册第八章第二节第一课时。
一、说教材
(一)地位和作用
本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。初中阶段要掌握的二元一次方程组的解法有代入消元法和加减消元两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排很少,不过这样也给了我们一较大的发挥空间。
(二)课程目标
1、知识与技能目标
(1)会用代入法解二元一次方程组
(2)初步体会解二元一次方程组的基本思想“消元”。
(3)通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成由未知向已知转化,培养学生观察能力和体会化归思想:
(4)通过用代入消元法解二元一次方程组的训练,及选用合理、简捷的方法解方程组,培养学生的运算能力。
2、情感目标:
通过研究探讨解决问题的方法,培养学生会作交流意识与探究精神。
(三)教学重点、难点
重点:用代入消元法解二元一次方程组。
难点:探索如何用代入消元法将“二元”转化为“一元”的过程。
二、说教法
针对本节特点,在教学过程中采用自主、探究、合作交流的教学方法,由教师提出明确问题,学生积极参与讨论探究、合作交流,进行总结,使学生从中获取知识。鉴于本节所学知识的特点,抽象教学、学生生搬硬套的学习方式将难取得理想效果,因此教师在引入课题时要利用好远程教育设施及资源创设情境,让学生去经历由具体问题抽象出方程组的过程。并让学生通过独立观察、合作交流来探讨怎样才能变“二元”为“一元”。然后利用单个二元一次方程的变形及时强化“代入”的本质。
三、说学法
本节学生在独立思考、自主探究中学习并对老师的问题展开讨论与交流。如何用代入消元法将“二元”转化为“一元”学生较难掌握,在提出消元思想后,应对具体的消元解法的过程进行归纳,让学生得到对代入法的基本步骤的概括,通过“把一个方程(必要时先做适当变形)代入另一个方程”实现消元。应注意引导学生认识到为什么要实施这样的步骤。把具体做法与消元结合,使学生明解其目的性。明确这样做的依据是等量代换。七年级的学生已经初步具备合作交流的能力。可以通过探究和合作来实现课程目标;此外,教学中,范例的讲解和随堂练习始终是学以对用的有效方法。随堂练习时应引导学生通过自我反省、小组评价来克服解题时的错误,必要时给与规范矫正。
四、说教学程序
本节课我将“自主、探究、合作、交流”运用到教学中,教学过程可以划分为以下几个环节:
1、引入新知:利用多媒体教学手段,创设情境,通过篮球比赛问题引入教学,情境活泼、自然。
2、探究新知:在篮球比赛问题中,首先可以用一元一次方程来解决实际问题,接着提出问题:能否设出两个未知数,列出两个方程组成方程组呢?(学生独立思考后分组探究讨论)。在学生得出正确的方程组之后提出问题:怎样解这个方程组呢?(学生分组讨论,教师加以适当的引导),各组派代表得出自己的结论,教师适时引导“消元”思想,对消元解法的过程予以归纳。
⑴变形:将其中一个方程的某个未知数用含有另一个未知数的式子表示。
⑵代入:将变形后的方程代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程。
⑶求解:求出一元一次方程的解。
⑷回代:将其代入到变形后的方程中,求出另一个未知数的解。
⑸结论:写出方程组的'解。
3、运用新知:在得出“代入消元”解二元一次方程组后,应用“代入消元法”解决实际问题,在学生解题过程中着重强调、矫正、理清思路和步骤。然后师生一起“解后思”:在解题时应注意什么?在随堂练习时教师关键是反馈矫正、积极评价。
4、教学小结,知识回顾:让学生畅所欲言谈本节课的得失,感到困惑和疑难的地方、解题的关键和步骤等。教师在学生发言的基础上再进行提炼:①解二元一次方程组的主要思路是“消元”;②解二元一次方程组的一般步骤是:一变形、二代入、三求解。
5、课外作业。为进一步巩固知识,布置适当的、具有代表性的作业。
一、说教材
首先谈谈我对教材的理解,《二元一次方程组》是人教版初中数学七年级下册第八章第一节的内容,本节课的内容是二元一次方程组的概念以及二元一次方程组的解。在此之前学习了一元一次方程和解方程的步骤,为本节课打下了良好的基础。学了本节课为后面的解二元一次方程的方法做下铺垫。因此本节课有着承上启下的作用。
二、说学情
接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,与类比学习能力。而且在生活中也为本节课积累了很多经验。所以,学生对于二元一次方程组概念理解较为容易,找出方程组的解,相对来说有难度,需要教师多引导。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
掌握二元一次方程与二元一次方程组的概念,并了解它们的解,能正确地找出二元一次方程组的解。
(二)过程与方法
通过类比学习、自主探究、合作交流的过程,提升类比学习的能力、培养探究的意识。
(三)情感态度价值观
感受数学与生活的密切联系,培养学习数学的兴趣。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:二元一次方程与二元一次方程组的概念以及方程与方程组的解。教学难点是:二元一次方程组解的探究。
五、说教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,我采用情境导入:展示篮球联赛图片,给出评分标准。并提出问题:这个队伍胜负场数分别是多少?
根据学生回答追问:用列方程解决问题,题中有几个未知数呢?从而引出本节课的课题《二元一次方程组》
这样设计的好处是:利用篮球联赛的图片导入,并讲清楚评分规则,不仅可以吸引学生探索的兴趣,还可以培养学生的数学应用意识。
(二)新知探索
接下来是教学中最重要的新知探索环节,主要通过三个活动展开学习。
活动一:学生尝试列方程解决问题,看看在列方程过程中遇到了什么困难?同桌之间互相交流。
学生分析题意,发现有未知数,可以使用列方程的方法解决问题。当让学生自己动手练习时,他们会发现,胜负的场数都是未知的。
此时教师可以引导学生发现和思考:要求的是两个未知数,能不能根据题意直接设两个未知数,使列方程变得容易呢?学生在这样的提示下会有一定的想法,但对于列出二元一次方程组来说还是比较困难的。
教师板书表格示意图,引导学生通过题意,发现题干中包含的必须同时满足的条件,得到两组关系式并设出未知数完成表格。
活动二:学生观察两个方程特点,与一元一次方程有什么不同?并试着下定义。
在这里学生通过类比学习,能够归纳出二元一次方程的概念:每个方程都含有两个未知数,并且含有未知数的项的次数都是1。了解了二元一次方程后,对于二元一次方程组的概念就可以很好的展开了,对于本题列了两个二元一次方程解决问题,像这样的方程组叫做二元一次方程组。
师生共同总结出二元一次方程与二元一次方程组的定义。
列出了二元一次方程组,要解决篮球联赛的问题,就要求出方程组的解,接下来进行第三个活动。
活动三:完成表格,以二元一次方程组中的一个方程为例。小组合作,找出几组整数解,并观察哪一组解也符合另一个方程。
在这里解二元一次方程组,可以先将问题简单化,先研究一个方程的解,找到几组解后,再看哪一组解也符合第二个方程。也就是两个方程的公共解。教师给出表格,小组在进行合作时,教师应引导学生思考结合题意,两个未知数应取正整数。填完表格后,师生共同总结出二元一次方程解的定义。
教师继续追问,哪一组的值也满足第二个方程。师生共同总结出什么叫做二元一次方程组的解。
得到方程组的解,回归情景得出实际问题的答案。
设计意图:通过三个活动展开本节课,不仅符合新课改的理念:学生是学习的主体,教师是教学活动中的组织者、引导者、合作者,还能通过小组活动、类比学习等活动丰富课堂。
(三)课堂练习
接下来是巩固提高环节。
练习:对下面的问题,列出二元一次方程组,并根据问题的实际意义,找出问题的解。
加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件。现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、第二道工序所完成的件数相等?
设计这道题可以让学生感受数学与生活的密切联系,学以致用。教师可以及时掌握学生本节课的学习情况,给予补充纠正。
(四)小结作业
在课程的最后我会提问:今天有什么收获?
引导学生回顾:二元一次方程组的定义与二元一次方程组的解。
本节课的课后作业我设计为:
思考除了用列表找二元一次方程组的解,还有什么方法能找出解,能不能将它变成我们熟悉的一元一次方程求解。
设计意图:本节课学生通过列表观察得到了方程组的解,作业设计为让学生思考解二元一次方程组的方法,并提示能不能把它变成熟悉的一元一次方程求解,为下节课的学习做下铺垫。
一、教材分析
1、教材的地位
二元一次方程组是最简单的多元(未知数的个数不止一个)方程组,通过对它的学习,可以了解的多元一次方程组的概念和解法的.基本思路。一元一次方程的知识是学习二元一次方程组的基础。本节课是在七年级上册已有的“一元一次方程”的基础上进一步讨论方程(组),为学生初中阶段学好必备的代数,几何的基础与基本技能,解决实际问题打下基础,同时提高学生能力,培养他们对数学的兴趣,以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。
2、教学目标
使学生掌握二元一次方程、二元一次方程组的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。使学生了解二元一次方程、二元一次方程组的解的含义,会检验一对数是不是它们的解。
3、重点、难点
重点:是学生认识到一对数必须同时满足两个二元一次方程,才是相应的二元一次方程组的解。掌握检验一对数是否是某个二元一次方程的解的书写格式。
难点:理解二元一次方程组的解的含义。
二、教法
启发诱导学生自主探究、充分发挥学生的主体地位、借助多媒体增加课堂容量。
三、学法
“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。
四、教学过程
1、教与学互动设计:通过“篮球比赛积分问题”让学生感受到用二元一次方程组能够很好的刻画问题中的数量关系,为二元一次方程和二元一次方程组做准备。通过小组讨论的方法,来调动学生学习的积极性。
2、合作交流,解读探究:通过上述的两个方程对新的知识让学生进行讨论交流。呼应新课标理念中让学生“动”起来,教师引导、学生自主学习的理念,进行新课的学习。
3、课堂练习:用幻灯片展示的习题,学生通过习题巩固本节课知识,更加充分的理解二元一次方程组的相关内容。
4、课堂小结及布置作业:通过小结及做习题反馈学生对本节课的收获。
五、教学反思
生命在活动中丰富,为孩子的一生幸福奠定基础,是活动教学的终极价值追求;课堂在活动中精彩,强调通过师生之间丰富多彩的主体活动“唤醒”沉睡的课堂,实现课堂教学的重建;学生在活动中发展,教师在活动中成长。由于我能力有限,还请各位领导、老师和同学批评指正。
一、教材分析
首先是教材的地位和作用。《二元一次方程组》是九年制义务教育课本七年级数学下册第八章第一节的内容。在此之前,学生已学习了《一元一次方程》,这为过渡到本节的学习起着铺垫作用。本节内容是二元一次方程组的前沿部分,在教材中起着占据承上启下的地位。
其次是教材的编写特点。教材从学生的年龄特征和知识的实际水平出发,让学生用“观察、猜想、操作、验证、归纳”的方法探索二元一次方程。这样符合学生的认知规律,同时也培养了学生主动探求知识的精神和思维的条理性。
二、教学目标
作为一名教师除了把知识教给学生,更重要的是应该教给学生学习的方法,培养他们的自主探究、合作创新的意识,使他们会学。因此根据新课标的要求、教材的特点及学生的实际情况,我制定了如下目标:
(1)知识目标:了解二元一次方程概念,会判断一组数是不是某个二元一次方程组的解。
(2)能力目标:在经历分析实际问题中数量关系过程中,使学生进一步体会方程是刻画现实世界的数学模型。通过自由思考与小组合作交流,培养学生的探讨能力
(3)情感目标:培养学生的发现意识和探究能力,使其具有强烈的好奇心和求知欲。认识知识的独立性。
三、重点难点
基于以上对教材和教学目标的分析,本着课程标准,在吃透教材基础上,我得出本节课的重点与难点。本节课的重点是:通过与一元一次方程的类比来来认识二元一次方程,通过列表求解、讨论掌握二元一次方程的解。本节课的难点是:引导学生运用“实际问题————数学问题的”建模意识来理解和探索二元一次方程的解。
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
四、教法学法
在教法方面,结合课程标准的相关理念及七年级学生思维特征,针对本节课的特点,在教学中我主要采用了讲授式教学、合作式教学、探究式教学、自主式教学等教学方法。在教学过程中特别注意创设思维情境,坚持(学生为主体,教师为主导)的二主方针。并在教学中借助多媒体进行演示,以增加课堂容量和教学的直观性。
在学法指导上,教给学生科学的学习方法,培养良好的学习习惯是最终目的。在本节课的教学中要帮助学生学会运用观察猜想、合作交流、抽象概括、总结归纳等方法来解决问题的方法,将知识传授和能力培养融为一体,使学生不仅学到科学探究的方法,同时体验到探究的甘苦,领会到成功的喜悦。
下面,我来具体谈一谈这一堂课的教学过程:
五、教学过程
为突出重点、突破难点,达到教学目标,根据学生的认知规律和学习心理,在本节课的教学中我设定教学过程如下:(一)、情境导入(二)、探究新知(三)、跟踪反馈(四)、收获园地(五)、布置作业
(一)、情境导入
创设情境——篮球比赛积分问题,这是学生熟悉和感兴趣的问题,让学生尝试列出二元一次方程。当然本课开始并不是让学生能够熟练列出二元一次方程,而是让学生明白有些问题可以用二元一次方程来解决。为今后学习数学问题解决实际问题作铺垫。对有些学生我们可以直接给他列出方程,让他感知二元一次方程的好处。从而体现新课标下人人学有价值的数学,不同的人在数学上得到不同的发展。由情境得出本课新的知识点是:从问题到方程。自然的过渡到第二个教学环节:探究新知。
(二)、探究新知
“探究一”——生活中的实例问题,“李明和妈妈买苹果和梨各多少千克?”。探究一的设计意图是:从实例中引入二元一次问题,引导学生讨论尝试用数学语言表述现实问题。培养学生的方程思想,在用数学语表述现实问题的过程中,强化学生对方程现实意义的理解,让学生感受到数学与我们生活的密切联系,激发学生的学习热情。
“探究二”例题分析引导学生类比一元一次方程的求解方法,由重量、总重量,价格、花费入手设未知量、列方程。列好方程后,引导学生用等量关系得出二元一次方程组后让学生利用已有知识,采用代入法求解。这一点并不难,让所有的学生都参与其中,体验学习数学的乐趣和成功的喜悦。
“探究三”在例题讲解中,教师要注意讲清楚要怎样解、为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。让学生感受到数学的严谨性、确定性,方程思想的进一步渗透,培养了学生的归纳、概括能力,突出了教学的重点。
(三)、跟踪反馈
新课标指出“在素质教育的大前提下,及时适量的的巩固与练习仍然是是帮助学生掌握新知提升能力的必要途径”故而,我设计了层次递进的三道巩固例题。教师引导学生审题,学生弄清题意后,师生共同解题,由教师示范解题过程,期间适当对题目进行引申,通过“变式延伸、引申重构”加入与概念相关的深层次题目,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。及时的训练能帮助学生巩固新知,自觉运用所学知识与解题思想方法。
(四)收获园地
在此,通过总结结论、强化认识,引导学生认识二元一次方程是刻画现实世界的有效数学模型。提问:“你从上面的学习中体会到解方程组的基本思路是什么吗?主要步骤有那些吗?”以加深学生对代入法的掌握。知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
(五)、布置作业
在本环节,我将课后作业的布置分为两个层次,一是数学练习即课后习题作业的布置,旨在让学生通过及时地巩固练习加深对所学知识内容的理解与掌握。二是数学思考即写一篇数学日记,让学生将本堂课所获得经验体会写成一篇数学日记,同学相互交流。旨在提高学生对数学来源于生活的认识,唤醒学生亲近数学的热情,帮助学生强化数学知识的记忆,逐步拉近他们观念中数学与生活的联系,激发学生学习数学的兴趣。
六、板书设计
在此,我以直观、系统为主旨,针对本节课的具体内容,设计了重难点突出、简洁明了的课堂板书,配合多媒体的教学方式,最大化的利用教学资源的同时也体现了时代要素在教学中的运用。
七、反思评价
按照“以人为本、以学定教”的教学理念,本节课的重点是如何“引导”学生自主探索、合作交流,使学生在经历数学知识的形成与应用过程中,加深对所学知识的理解,从而突破重难点、达到教学目标。整节课还应做到全程关注每一个学生的学习状态,引导学生学会欣赏自己、欣赏同伴,彼此学习,在共同学习中掌握知识、发展能力。
在教学中应始终坚持“注重数学思想方法的教学,加强数学学习方法的指导,为学生终生学习打下坚实基础”为主旨,同时努力推行“成功教育、快乐教育”的理念,把握评价的时机与尺度,实现评价主体和形式的多样化,从而激发学生的学习兴趣,激活课堂气氛,提高课堂教学的效率与效果。促使学生主动参与并“卷入”到“做”数学的活动中,从而更加深刻的认识平行四边形的性质。
以上是我说课的全部内容,请给各评委老师批评指正!
结束:以上,我仅从说教材、说目标、说教学法、说重难点、说教学程序、说板书及反思评价几个方面上,说明了“教什么”和“怎么教”,阐明了“为什么这样教”。以上是我对本节课的一些初浅的认识和想法,有不足之处,希望各位委评老师批评指导。
初中数学二元一次方程组说课稿
作为一位兢兢业业的人民教师,通常需要用到说课稿来辅助教学,说课稿有助于教学取得成功、提高教学质量。说课稿应该怎么写才好呢?以下是小编为大家整理的初中数学二元一次方程组说课稿,欢迎阅读,希望大家能够喜欢。
各位评委老师们:
大家下午好!今天我说课的内容是人教版初中数学七年级下册第八章第一节二元一次方程组。我主要从教材分析、教法、学法、教学过程四个方面向大家汇报我对这节课的认识和理解。
一、说教材分析
1.教材的地位和作用
二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。
2.教学目标
知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。
能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。
情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。
3.重点、 难点
重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。
难点:在实际生活中二元一次方程组的应用。
二、教法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的.组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。
三、学法
“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。
四、教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)复习旧知,温故知新
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2)创设情境,提出问题
这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数,
胜场积分+负场积分=总积分。
这两个条件可以用方程
x+y=22
2x+y=40
表示:
上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.
把两个方程合在一起,写成
x+y=22
2x+y=40
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
(3)发现问题,探求新知
满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。
一、说教材
本节课讲的是七年级《数学》下册第八章第三节的第一课时用二元一次方程组解决实际问题,在学生已经熟练掌握二元一次方程组的解法的基础上,通过对实际问题审,设,列,解,答;经历建立二元一次方程组这种数学模型解决实际问题的过程,体验用方程组解决实际问题的一般方法,进一步提高分析问题与解决问题的能力,进而增强数学应用的意识。
二、说教学目标
(知识与技能)
1.经历用方程组解决实际问题的过程,体会方程组是刻画现实世界中含有多个未知数的问题的有效数学模型;
2.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;
(过程与方法)
学会比较估算与精确计算以及检验方程组的解是否符合题意并正确作答
(情感态度与价值观)
培养分析、解决问题的能力,体会二元一次方程组的应用价值,感受数学文化。
三、说教学重、难点
(教学重点)以方程组为工具分析,解决含有多个未知数的实际问题
(教学难点)确定解题策略,比较估算与精确计算
四、说教法
教法设计:回顾练习(5分钟),自主探究(5分钟),小组交流(5分钟),成果展示(10分钟),疑难点拨(10分钟),课堂运用(5分钟),小结发言(5分钟)。
教法设计意图
1.回顾练习
内容:
用适当的方法解方程组
(2)既是方程的解,又是方程的解是()
A.B.C.D.设计意图:巩固二元一次方程组的解法
2.自主探究
出示问题:养牛场原有30只母牛和15只小牛,一天约需用饲料675一周后又购进12只母牛和5只小牛,这时一天约需用饲料940kg.饲养员李大叔估计平均每只母牛1天约需用饲料18~20kg,每只小牛1天约需用饲料7~8kg.你能否通过计算检验他的估计?
为了解决这个问题,请认真看P.105页的内容.
思考:判断李大叔的估计是否正确的方法有2种:
(1)先假设李大叔的估计正确,再根据问题中给定的数量关系来检验.
(2)根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确.
5分钟后谁能帮助李大叔解决问题,并能解决简单的实际问题?
学生按照自学指导看书,教师巡视,确保人人学得紧张高效.
设计意图:引导学生独立思考,培养自主学习的能力
3.小组交流
组内成员讨论各自的探究成果,对不足和错误进行补充与更正
最终提炼出最佳方法.
设计意图:培养合作学习的习惯
4.成果展示
各组在黑板上展示解题的方法(也就是设,列的步骤),然后由发言人讲解详细的做法.
设计意图:培养分析与解决问题能力
5.疑难点拨
(1)根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量列出方程组
(2)方法的多样2种解法
设计意图:突破难点,打开思考路线,指导规范解题
6.课堂运用
实验中学组织爱心捐款支援灾区活动,九年级一班55名同学共捐款1180元,捐款情况见下表.表中捐款10元和20元的人数不小心被墨水污染已经看不清楚,请你帮助确定表中的数据.
捐款(元)
5
10
20
50
人数
6
7
设计意图:巩固解决实际问题的方法与步骤
7.小结发言
谈出本节课的收获与困惑
设计意图:通过各小组的小结,从审,设,列,解,答五步规范实际问题的解法.
五、说作业安排
作业安排一定要按照学生的层次性分类定量的进行(我一般将学生分成三类:特优生,优秀生,待优生)
设计意图:从不同层次有效的提高学生对知识的掌握程度