51费宝网说课稿一等奖

搜索51费宝网

四年级上册《积的变化规律》说课稿一等奖

四年级上册《积的变化规律》说课稿一等奖

时间:2023-06-19 12:33:02

类别:说课稿一等奖

四年级上册《积的变化规律》说课稿一等奖

1、四年级上册《积的变化规律》说课稿

教学目标:

1、探索积的变化规律,尝试用数学语言进行描述,并进行简单运用。

2、经历“积的变化规律”的发现、表达和应用的过程,初步获得探索规律的方法和经验,发展概括、推理能力。

3、感受探索、运用规律的乐趣。

教学过程:

一、从生活中来

1、请同学们看屏幕。一只小熊正在乘着热气球去旅行。如果气球以每秒5米的速度上升,那么小熊飞2秒有多高呢?你是怎么想的?列式4秒飞多高,为什么?列式6秒又飞多高,8秒呢,齐,你们说停它就停!准备,起飞,多少米?

2伸出你的手我们来指一指,10秒飞多高?12秒?能列个算式吗?14秒、18秒……什么感觉?越飞越高。为什么会越飞越高呢?有补充吗?当每秒上升的速度不变时,气球飞的时间越长,飞得越高。【引导学生在具体情境中感悟:速度不变时,上升的高度随着时间的变化而变化。】下面请同学们观察黑板上的三个算式,回想一下,乘法算式中,乘号前面的数叫做……乘号后面的数叫做什么,所得的结果叫做……仔细观察,因数、因数、积。谁变了,谁没变?结合这三个算式说说你的发现。积变了,有怎样的变化呢?

二、探索规律

1、发现规律。

请同学们拿出学习单一,有两组算式,大家可以选择其中一组研究,也可以两组都完成。

在研究之前请同学读一读学习建议。

我们来听听他们是怎么思考的

按什么顺序观察的第一个因数,从()到()乘几,第二个因数不变。积也乘几,看来观察得越全面,得到的结论才能越完整。

这两组算式虽然内容不同,但却藏着相同的规律,大家发现了吗?那你能不能写出一组具有这样规律的算式,在学习单二上完成,汇报【引导学生从若干组不同的的算式中,自己探索积的变化与谁的变化有关、有什么关系,并把它们表示出来,从而初步感悟积的变化规律,为抽象、概括规律打好基础。】

2、表达规律。

师:刚才我们通过几组题找到了其中藏着的规律,下面你能把刚才我们发现的规律用最简洁的方式,可以借助一句话、或一组算式表达出来吗?写在学习单的空白处

汇报,强调几相同,0除外。把这条规律写在黑板上。那这条重要的规律就是积的变化规律。

教师借此整理板书,得到积的变化规律。【引导学生个性化的表达,使内隐的认识外显化,并在全班交流中,逐渐完善对规律的认识,发展概括、推理能力。】

3、像刚才那样,我们用大量的不同的例子来概括这个规律的方法,叫做不完全归纳法。

4、应用规律。

1、你能根据8×50400,直接写出下面各题的积。

2、认识吗?小青蛙。这只小青蛙会“吃”数,并且吃进的数与嘴里的数相乘,能“吐”出来一个新数。已知:6×=222抢答:24×=?3×=?问:方块里的数不知道,怎么知道结果的呢?

三、到生活中去

回想一下,这节课我们是怎样得到积的变化规律的?从热气球开始,通过几组算式用不完全归纳法得到了积的变化规律,然后通过青蛙吐数运用了积的变化规律。那谁来说说这节课你有哪些收获呢?运用积的变化规律有什么好处?学了积的.变化规律你又产生了哪些猜想?【引导学生有意识的回顾学习过程,初步获得探索规律的一般方法。】

2、四年级上册《积的变化规律》说课稿

一、说教材

1.教学内容:

这节课内容是人教版四年级上册第三单元的例题、想想、做做第14题。

2.教材分析:

本节课是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上,引导学生借助计算器探索积的一些变化规律,掌握这些规律,为学生进一步加深对乘法运算的理解以及今后自主探索和理解小数乘除法的计算方法做好准备。

教材首先出示2×6 =12、20×6=120、200×6=1200 ,让学生依据给出的乘法算式,探索当一个因数不变,另一个因数乘一个数,得到的积会有什么变化,引导学生作出猜想。再列举一些例子,用计算器计算来验证猜想。引导学生观察,学生比较容易发现规律,提出猜想,用计算器进行验证。由于研究的是关于运算的规律,势必涉及较大数的计算,为了将学生的思维从繁杂的计算中解脱出来,使学生更加关注规律的发现过程,所以用计算器作为探索规律的`工具。

3.说教学目标

基于以上认识,我从知识和能力、过程与方法、情感态度与价值观三个维度设计了以下教学目标:

(1)借助计算器的计算,使学生探索并掌握一个因数不变,另一个因数乘几,积也随着乘几的变化规律。

(2)经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的基本方法,进一步获得一些探索数学规律的经验,发展思维能力。

(3)通过学习活动的参与,培养学生合作交流的能力,并在探索活动中感受数学结论的严谨性与正确性,获得成功的体验,增强学习数学的兴趣和自信心。

4.教学重点:使学生探索并掌握一个因数不变,另一个因数乘几(或除以几),积也随着乘几(或除以几)的变化规律。

教学难点:在探索和发现规律上,能更多的体验一般策略和方法,发展数学思考。

5.课前准备:课件、学生每人计算器一个、学生每人一张空白表格。

二、说教法和学法

(1)教法:让学生在具体的情境中用观察、验证来探索积的变化规律,教师引导与学生自主探究相结合,充分发挥学生学习的主动性。

(2)学法:通过观察交流,让学生经历提出猜想、验证猜想、表述规律、应用规律的自主探索过程,获得探索数学规律的经验。

三、说教学过程

结合本课特点,我设计了以下五个教学环节:

1、情境引入,猜想规律

(1)课件出示我校为福利院捐款献爱心的照片,创设我校师生为福利院捐款买物品的情境,已知每千克橙子6元,买2千克多少元?买20千克?买200千克呢?不仅使学生感知捐款的意义,还为学生学习新知创设熟悉的情景。

(2)引导学生列出第一个问题的算式,计算出结果。并使学生清楚地知道算式中的三个数分别叫做一个因数、另一个因数和积。

(1)6× 2= 12

(2) 6×20=120

(3) 6× 200=1200

(3)引导学生观察、比较,思考积会怎样变化。提出猜想:一个因数不变,另一个因数乘几,积也随着乘几。

『设计理念』这样的设计是想让学生解决生活中的实际问题,激发学生的学习兴趣,培养学生的数感及提出数学猜想的意识和能力。

2、动手操作,验证规律

(1)首先让学生独立用计算器计算出每题的结果并将得到的积与原来的积进行比较,然后组织学生相互交流,初步验证猜想,老师进行小结:经过实际计算,发现这里每一题的计算结果都符合先前的猜想 。并进一步提出:这个猜想是不是适合所有的乘法算式?

一个因数 另一个因数 积 积的变化

(1) 6 × 2 = 12

(2) 6 × 20 = 120

(3) 6 × 200 = 1200

(2)引导学生举例,进一步验证猜想。同桌相互合作,写出任意一组算式:一个因数不变,另一个因数乘一个数。用计算器或者笔算算出结果,进行比较。 全班交流,通过交流进一步确认猜想成立。

(3)语言表述规律,小结探索方法。首先让学生说规律,然后讲出探索的方法:如用计算器计算,提出猜想、验证猜想、不完全归纳等。

『设计理念』新课标当中指出:把现代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意并有更多的精力投入到现实的探索性的数学活动中来。因此这一环节我让学生充分利用计算器,运用不完全归纳法,通过具体丰富的实例验证猜想,让学生用数学语言准确地描述自己发现的规律。引导学生掌握数学规律与知识的获得方法,充分发挥学生学习的主动性,培养学生的合作交流的能力,帮助学生在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,使学生终生受益。

3.实践运用,巩固规律

(1)课本P83想想做做第1题。采用题组的形式让学生应用规律直接写出乘法算式的积。完成后再让学生说说是怎样想的,使学生进一步熟悉积的变化规律。

(2)用规律解释口算、笔算、和简算。

口算:16×5= 16×500= 16 ×5000=

竖式计算:17×5 17×50 17×500

简便计算:125×48=125×8×6

让学生口头回答,体会积的变化规律的应用,进一步明确乘数末尾有0的乘法的口算、笔算方法,以及积的变化规律在乘法计算中的巧妙应用。

(3)补充题:2008年的奥运会在北京举行,小明的爸爸决定去北京观看一些比赛项目,为中国健儿加油。

如果坐汽车,每小时行使60千米,4小时可以多少千米?

如果坐火车,火车的速度是汽车的2倍,同样的时间可以行使多少千米?

这题的第2个问题中蕴含着两种解题思路,让学生说一说、比一比。一种是根据速度×时间=路程的数量关系,先算出变化了的那个因数是多少,再求积。另一种是根据一个因数不变,另一个因数乘以几,原来的积也乘以几解决问题。两种方法得出的积相同,使学生体会积的变化规律是客观存在的普遍规律。

『设计理念』在层次分明,形式多样的练习中,通过让学生想一想、填一填、说一说,使学生在规律的应用中逐步加深对积的变化规律的理解。

4.拓展练习,升华规律

36×5400= 18×24 =

36×540 = 180×240 =

36×54 = 1800×2400 =

『设计理念』这一环节是通过两组题目的计算,让学生用本节课的研究问题的方法继续探索积的变化规律,使得积的变化规律的内涵得到延伸,让学生对这一规律有进一步的理解。

5.总结全课,内化规律

通过今天这节课的学习,你有了什么收获?还有哪些疑问?

『设计理念』在回忆中总结全课,培养学生的反思意识与能力。

四、说板书设计。(见课件)

综观全课,我给学生营造了宽松的学习氛围,让学生在主动观察、讨论交流、猜想验证等数学活动中,通过看、想、说的过程,逐步探索出一个因数不变,另一个因数乘几,积也随着乘几的变化规律。这样的探索过程丰富了学生学习的体验,加深了学生的思考,突破了学生思维和经验的障碍,而且为学生创造了猜测与验证、辨析与交流的空间,激发了他们的学习兴趣,让学生真正成为了学习的主人,使课堂充满生命的活力。

3、四年级上册《积的变化规律》说课稿

一、说教材

1、教学内容:

这节课内容是人教版四年级上册第三单元的例题、想想、做做第1—4题。

2、教材分析:

本节课是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上,引导学生借助计算器探索积的一些变化规律,掌握这些规律,为学生进一步加深对乘法运算的理解以及今后自主探索和理解小数乘除法的计算方法做好准备。

教材首先出示2×6 =12、20×6=120、200×6=1200 ,让学生依据给出的乘法算式,探索当一个因数不变,另一个因数乘一个数,得到的积会有什么变化,引导学生作出猜想。再列举一些例子,用计算器计算来验证猜想。引导学生观察,学生比较容易发现规律,提出猜想,用计算器进行验证。由于研究的是关于运算的规律,势必涉及较大数的计算,为了将学生的思维从繁杂的计算中解脱出来,使学生更加关注规律的发现过程,所以用计算器作为探索规律的工具。

3、说教学目标

基于以上认识,我从知识和能力、过程与方法、情感态度与价值观三个维度设计了以下教学目标:

(1)借助计算器的计算,使学生探索并掌握一个因数不变,另一个因数乘几,积也随着乘几的变化规律。

(2)经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的基本方法,进一步获得一些探索数学规律的经验,发展思维能力。

(3)通过学习活动的参与,培养学生合作交流的能力,并在探索活动中感受数学结论的严谨性与正确性,获得成功的体验,增强学习数学的兴趣和自信心。

4、教学重点:使学生探索并掌握一个因数不变,另一个因数乘几(或除以几),积也随着乘几(或除以几)的变化规律。

教学难点:在探索和发现规律上,能更多的体验一般策略和方法,发展数学思考。

5、课前准备:课件、学生每人计算器一个、学生每人一张空白表格。

二、说教法和学法

(1)教法:让学生在具体的情境中用观察、验证来探索积的变化规律,教师引导与学生自主探究相结合,充分发挥学生学习的主动性。

(2)学法:通过观察交流,让学生经历提出猜想、验证猜想、表述规律、应用规律的自主探索过程,获得探索数学规律的经验。

三、说教学过程

结合本课特点,我设计了以下五个教学环节:

1、情境引入,猜想规律

(1)课件出示我校为福利院捐款献爱心的照片,创设我校师生为福利院捐款买物品的情境,已知每千克橙子6元,买2千克多少元?买20千克?买200千克呢?不仅使学生感知捐款的意义,还为学生学习新知创设熟悉的情景。

(2)引导学生列出第一个问题的算式,计算出结果。并使学生清楚地知道算式中的三个数分别叫做一个因数、另一个因数和积。

(1)6× 2= 12

(2) 6×20=120

(3) 6× 200=1200

(3)引导学生观察、比较,思考积会怎样变化。提出猜想:一个因数不变,另一个因数乘几,积也随着乘几。

『设计理念』这样的设计是想让学生解决生活中的实际问题,激发学生的学习兴趣,培养学生的数感及提出数学猜想的意识和能力。

2、动手操作,验证规律

(1)首先让学生独立用计算器计算出每题的结果并将得到的积与原来的积进行比较,然后组织学生相互交流,初步验证猜想,老师进行小结:经过实际计算,发现这里每一题的计算结果都符合先前的猜想 。并进一步提出:这个猜想是不是适合所有的乘法算式?

为您提供优质资源!

为您提供优质资源!

一个因数 另一个因数 积 积的变化

(1) 6 × 2 = 12

(2) 6 × 20 = 120

(3) 6 × 200 = 1200

(2)引导学生举例,进一步验证猜想。同桌相互合作,写出任意一组算式:一个因数不变,另一个因数乘一个数。用计算器或者笔算算出结果,进行比较。 全班交流,通过交流进一步确认猜想成立。

(3)语言表述规律,小结探索方法。首先让学生说规律,然后讲出探索的方法:如用计算器计算,提出猜想、验证猜想、不完全归纳等。

『设计理念』新课标当中指出:把现代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意并有更多的精力投入到现实的探索性的数学活动中来。因此这一环节我让学生充分利用计算器,运用不完全归纳法,通过具体丰富的实例验证猜想,让学生用数学语言准确地描述自己发现的规律。引导学生掌握数学规律与知识的获得方法,充分发挥学生学习的主动性,培养学生的合作交流的能力,帮助学生在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,使学生终生受益。

3、实践运用,巩固规律

(1)课本P83想想做做第1题。采用题组的形式让学生应用规律直接写出乘法算式的积。完成后再让学生说说是怎样想的,使学生进一步熟悉积的变化规律。

(2)用规律解释口算、笔算、和简算。

口算:16×5= 16×500= 16 ×5000=

竖式计算:17×5 17×50 17×500

简便计算:125×48=125×8×6

让学生口头回答,体会积的变化规律的应用,进一步明确乘数末尾有0的乘法的口算、笔算方法,以及积的变化规律在乘法计算中的巧妙应用。

(3)补充题:2008年的奥运会在北京举行,小明的爸爸决定去北京观看一些比赛项目,为中国健儿加油。

如果坐汽车,每小时行使60千米,4小时可以多少千米?

如果坐火车,火车的速度是汽车的2倍,同样的时间可以行使多少千米?

这题的第2个问题中蕴含着两种解题思路,让学生说一说、比一比。一种是根据速度×时间=路程的数量关系,先算出变化了的那个因数是多少,再求积。另一种是根据一个因数不变,另一个因数乘以几,原来的积也乘以几解决问题。两种方法得出的积相同,使学生体会积的变化规律是客观存在的普遍规律。

『设计理念』在层次分明,形式多样的练习中,通过让学生想一想、填一填、说一说,使学生在规律的应用中逐步加深对积的变化规律的理解。

4、拓展练习,升华规律

36×5400= 18×24 =

36×540 = 180×240 =

36×54 = 1800×2400 =

『设计理念』这一环节是通过两组题目的计算,让学生用本节课的研究问题的方法继续探索积的变化规律,使得积的变化规律的内涵得到延伸,让学生对这一规律有进一步的理解。

5、总结全课,内化规律

通过今天这节课的学习,你有了什么收获?还有哪些疑问?

『设计理念』在回忆中总结全课,培养学生的反思意识与能力。

四、说板书设计。(见课件)

综观全课,我给学生营造了宽松的学习氛围,让学生在主动观察、讨论交流、猜想验证等数学活动中,通过看、想、说的过程,逐步探索出一个因数不变,另一个因数乘几,积也随着乘几的变化规律。这样的探索过程丰富了学生学习的体验,加深了学生的思考,突破了学生思维和经验的障碍,而且为学生创造了猜测与验证、辨析与交流的空间,激发了他们的学习兴趣,让学生真正成为了学习的主人,使课堂充满生命的活力。

4、四年级上册《积的变化规律》说课稿

一、教材分析

规律《积的变化规律》是人教版小学数学四年级上册第三单元的内容,教材安排了积的变化规律的例题学习,掌握这些规律,为学生进一步加深对乘法运算的理解,以及理解小数乘法的计算方法做准备。

二、学情分析

本节课内容是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上进行的,因此这节课中,我放手让孩子们自己去计算,去比较,再通过我的适时引导,让孩子用简洁的语言概括出积的变化规律。

三、教学目标

根据对教材和学情的分析,我制定了以下三维目标:

知识目标:使学生结合具体情境,通过计算、观察、比较,发现积随因数变化而变化的规律,并在此基础上放手探讨积的变化规律。

能力目标:培养学生初步的抽象概括能力和数学语言表达数学结论的能力。

情感目标:体验探索和发现数学规律的过程,进一步产生对数学的好奇心与兴趣。

四、教学重难点

教学重点:积随因数的变化规律。

教学难点:引导学生自己发现规律、验证规律、应用规律。

五、教法

我引导学生在具体的情境中通过观察、猜想、验证来自主探索概括出积的变化规律。

六、学法

学生经历观察思考、提出猜想、验证猜想、表述规律、应用规律的自主探索过程,获得探索教学规律的一般经验。

七、教学具及相关资料

小黑板

八、教学流程

谈话导入猜想规律验证规律表述规律,小结探索方法应用规律拓展延伸课堂小结。

九、教学设计过程

1、谈话导入

课的开始我与孩子进行谈话“学校为了奖励参加大扫除的学生,每人发一本笔记本,每本笔记本6元,买2本需要多少元钱?买20本,200本呢?孩子你们算算。”

根据学生的回答,我板书三个算式及其结果:

6×2=12(元)

6×20=120(元)

6×200=1200(元)

设计理念:我创造性地利用教材,将纯粹的算式赋予一定的生活意义,让孩子感受数学知识就在身边,从而更大地激发学生的学习兴趣。

2、猜想规律

(1)我提出问题:观察这三个算式,你会发现什么规律呢?

我引导孩子从上向下观察:因数到因数,积到积有什么规律。

(2)小组交流,集体汇报。让孩子把自己发现的规律讲给同伴听,经过小组内交流,孩子不难提出猜想:一个因数不变,另一个因数乘以几,积就乘以几。

(3)我引导孩子再次从下向上观察,这次孩子很快提出新的规律:一个因数不变,另一个因数除以几,积就除以几。

设计理念:孩子通过独立观察,小组交流,使学生真正体验自主探索和发现数学规律的过程。同时,我活用教材,用一组算式揭示两条规律,先后有序,主次分明。

3、验证规律

孩子都看出规律来了,那么这些规律是不是适合所有的算式呢?下面请孩子自己来验证一下。

我出示小黑板,男生女生分为两组,一组应用规律直接写出结果,另一组用笔算或计算器验证。两组交换角色再次验证。

设计理念:通过学生分组协作,体验验证数学规律的过程。

4、表述规律,小结探索方法。

我首先让学生说规律,趁势解释说明“乘以几=扩大几倍,除以几=缩小几倍”,学生在以往的基础之上,很容易接受这点。然后引导学生如何把两条规律归纳成一条,得出积的变化规律:两个因数相乘,一个因数不变,另一个因数扩大(或缩小)几倍,积就扩大(或缩小)几倍。我板书规律,揭示本课主题。最后我让孩子们说说这规律是如何得来的?

设计理念:孩子通过对探索过程的反思,逐步形成自己的思维策略。

5、应用规律

孩子自己完成教材14题。指明孩子自己说说如何得出结果的。个别孩子可能会提出:我用笔算也挺简单的,那我今天学的有什么用呢。好问题出来了,进入下一环节。

6、拓展延伸。

(1)一个数乘以18积是270,如果这个数乘以54,积是()。

(2)36×10=360

(36÷2)×(36×2)=

(36×3)×(36÷3)=

设计理念:通过层次分明,形式多样的练习,可以有效地激发学生学习兴趣,拓展学生的思维空间,使不同的学生得到不同的发展。

7、课堂总结,内化规律。

这节课你学到了什么?学的高兴吗?

设计理念:培养学生自我总结、自我反思的学习能力。

十教学效果分析

本节课我创造性地活用教材,营造了宽松、自主的学习氛围,孩子们通过看、想、说、做等数学活动,去经历主动观察独立思考小组交流提出猜想验证规律运用规律的过程,丰富了学生学习的体验,培养学生的数学思维。

5、四年级上册《积的变化规律》说课稿

各位评委,各位老师:

你们好!今天我说课的内容是积的变化规律,它选自人教版小学数学四年级上册第58页。

一、说教材

积的变化规律是在学生已经学习了三位数乘两位数、用计算器进行计算等知识的基础上进行教学的,它为学生今后学习小数乘法等知识铺平了道路,在本节课中,学生要学习积的.变化规律。通过本节课的学习,对于发展学生的运算能力、合情推理能力具有十分重要的作用。

我们都知道,四年级的学生具有一定的经验,能够将新知识转化为已有的知识,但是他们的抽象思维还很弱,在理解积的变化规律的探究过程时会有一定的难度。基于以上对教材的分析和对学情的分析,我将理解积的变化规律确定为本节课的重点,将理解其探究过程确定为本节课的难点。并且拟定了以下三维目标:

1、能理解并掌握积的变化规律,能正确表述积的变化规律,并能正确运用。

2、经历积的变化规律的探究过程,学会观察、猜想、验证、概括的方法,感受变与不变的思想,发展学生的合情推理能力。

3、体验自主探索、合作交流的乐趣,培养学生献爱心的好品质。

二、说教学设想

为了有效地实现教学目标,在实施教学时,我将努力做到以下两个注重:

1、注重探究过程的经历:积的变化规律的探究过程需要经历从直观到抽象,从朦胧到清晰的过程,这过程需要学生通过观察、猜想、验证、概括等数学活动,从而理解积的变化规律,积累数学活动经验。

2、注重变与不变思想的渗透:通过将一个因数不变,另一个因数变化,来探索积的变化规律,发展学生的合情推理能力。

三、说教学流程

(一)创设情境,引入新课

同学们,为了响应学校“节省零花钱,牵手好朋友”的号召,我们班与希望小学四(1)班开展“手拉手,献爱心”活动,请你计算一下,一盒水彩笔6元,如果买2盒要花多少元?买20盒,买200盒呢?请同学们拿出草稿纸列式计算一下,学生会列出算式:6×2=12(元);6×20=120(元);6×200=1200(元)。(设计意图:通过创设“买文具”的具体情境,激活了学生原有的知识,激发了学生的积极性,为探究积的变化规律提供素材,做好铺垫。)

(二)自主探索,理解规律

第一层次:感知规律。观察这组算式,你发现了什么?什么变了,什么没变?先独立思考一下,有了想法之后四人一小组相互讨论,之后教师巡视,全班反馈。我会引导学生从上往下进行观察,学生会发现从①式到②式,从②式到③式,一个因数不变,另一个因数乘10,积也乘10;学生也会发现从①式到③式,一个因数不变,另一个因数乘100,积也乘100。那如果从下往上观察,你又发现了什么?学生会发现从式③到②式,从②式到①式,一个因数不变,另一个因数除以10,积也除以10;学生也会发现从③式到①式,一个因数不变,另一个因数除以100,积也除以100。那谁能用一句简洁的话来说一说你发现的规律,先独立说一说,再同桌之间相互说,从而由学生说出:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。

第二层次:提出猜想。同学们发现的规律是不是具有普遍性呢?我们需要再举一些例子来验证一下,看看会不会出现相同的情况,如果有一个例子出现不同的情况,我们就不能把发现当成规律。

第三层次:验证规律。请每个同学写出3个算式,同桌相互检查,并交流因数和积是怎样变化的?对于学有余力的学生,还可以让他们在别人的算式后面接着写一些。学生会写出7×12=84、7×6=42、7×3=21;或者6×150=900、6×30=180、6×6=36等等。

第四层次:归纳结论。同学们,黑板上这么多算式,现在你能完整地说一说这个变化规律?先独立地说一说,再同桌两人相互说,最后我会指名学生说,从而得出:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。这里除以的数可以为0吗?不能为0,因为0不能作除数。

第五层次:拓展延伸。刚刚大家已经知道了一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。那么如果一个因数不变,另一个因数加(或减)几,积是不是也加(或减)几呢?学生会发现这是不成立的,例如7×(12+1)≠(84+1)。

第六层次:解释应用。我会出示一个神奇缺八数。

12345679×9=111111111

12345679×18=222222222

12345679×27=( )

12345679×36=( )

12345679×45=( )

12345679×( )=( )

通过这个神奇缺八数的应用来让学生感受数学的神奇奥秘。

有效地数学学习是学生学与教师教的统一,在本环节中,通过让学生观察、猜想、验证、概括等数学活动,从而丰富了学生的体会,加深学生对积的变化规律的理解,从而突出重点,突破难点。

(三)学以致用,分层练习

我会将做一做作为基础练,以巩固新知识,检查学生是否理解和掌握积的变化规律。

我会将“一所小学扩建校园,准备将长方形操场的宽度从8变成24米,长不变,扩建前的面积是560平方米,问扩建后的操场面积是多少?”作为综合练,通过这道题来培养学生综合运用知识的能力。

24×75=1800 36×104=3744

(24○6)×(75×6)=1800 (36×4)×(104○4)=3744

(24○3)×(75○□)=1800 (36○□)×(104○□)=3744

我会将这道题作为拓展练,通过计算这几道题目,让学生发现一个因数乘几,另一个因数除以相同的数,他们的积是不变的,从而进行拓展,发展学生的抽象思维。

(四)课堂回眸,内化提升

第四环节:课堂回眸,内化提升。此时,我会请学生来说说这节课你学习到了什么,你有什么需要提醒其他同学注意的吗?从而结束本节课的课题。

6、四年级上册《积的变化规律》说课稿

一、说教材

1.教学内容:

这节课内容是人教版四年级上册第三单元的例题、想想、做做第14题。

2.教材分析:

本节课是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上,引导学生借助计算器探索积的一些变化规律,掌握这些规律,为学生进一步加深对乘法运算的理解以及今后自主探索和理解小数乘除法的计算方法做好准备。

教材首先出示2×6 =12、20×6=120、200×6=1200 ,让学生依据给出的乘法算式,探索当一个因数不变,另一个因数乘一个数,得到的积会有什么变化,引导学生作出猜想。再列举一些例子,用计算器计算来验证猜想。引导学生观察,学生比较容易发现规律,提出猜想,用计算器进行验证。由于研究的是关于运算的规律,势必涉及较大数的计算,为了将学生的思维从繁杂的计算中解脱出来,使学生更加关注规律的发现过程,所以用计算器作为探索规律的工具。

3.说教学目标

基于以上认识,我从知识和能力、过程与方法、情感态度与价值观三个维度设计了以下教学目标:

(1)借助计算器的计算,使学生探索并掌握一个因数不变,另一个因数乘几,积也随着乘几的变化规律。

(2)经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的基本方法,进一步获得一些探索数学规律的经验,发展思维能力。

(3)通过学习活动的参与,培养学生合作交流的能力,并在探索活动中感受数学结论的严谨性与正确性,获得成功的体验,增强学习数学的兴趣和自信心。

4.教学重点:使学生探索并掌握一个因数不变,另一个因数乘几(或除以几),积也随着乘几(或除以几)的变化规律。

教学难点:在探索和发现规律上,能更多的体验一般策略和方法,发展数学思考。

5.课前准备:课件、学生每人计算器一个、学生每人一张空白表格。

二、说教法和学法

(1)教法:让学生在具体的情境中用观察、验证来探索积的变化规律,教师引导与学生自主探究相结合,充分发挥学生学习的主动性。

(2)学法:通过观察交流,让学生经历提出猜想、验证猜想、表述规律、应用规律的自主探索过程,获得探索数学规律的经验。

三、说教学过程

结合本课特点,我设计了以下五个教学环节:

1、情境引入,猜想规律

(1)课件出示我校为福利院捐款献爱心的照片,创设我校师生为福利院捐款买物品的情境,已知每千克橙子6元,买2千克多少元?买20千克?买200千克呢?不仅使学生感知捐款的意义,还为学生学习新知创设熟悉的情景。

(2)引导学生列出第一个问题的算式,计算出结果。并使学生清楚地知道算式中的三个数分别叫做一个因数、另一个因数和积。

(1)6× 2= 12

(2) 6×20=120

(3) 6× 200=1200

(3)引导学生观察、比较,思考积会怎样变化。提出猜想:一个因数不变,另一个因数乘几,积也随着乘几。

『设计理念』这样的设计是想让学生解决生活中的实际问题,激发学生的学习兴趣,培养学生的数感及提出数学猜想的意识和能力。

2、动手操作,验证规律

(1)首先让学生独立用计算器计算出每题的结果并将得到的积与原来的积进行比较,然后组织学生相互交流,初步验证猜想,老师进行小结:经过实际计算,发现这里每一题的计算结果都符合先前的猜想 。并进一步提出:这个猜想是不是适合所有的乘法算式?

一个因数 另一个因数 积 积的变化

(1) 6 × 2 = 12

(2) 6 × 20 = 120

(3) 6 × 200 = 1200

(2)引导学生举例,进一步验证猜想。同桌相互合作,写出任意一组算式:一个因数不变,另一个因数乘一个数。用计算器或者笔算算出结果,进行比较。 全班交流,通过交流进一步确认猜想成立。

(3)语言表述规律,小结探索方法。首先让学生说规律,然后讲出探索的方法:如用计算器计算,提出猜想、验证猜想、不完全归纳等。

『设计理念』新课标当中指出:把现代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意并有更多的精力投入到现实的探索性的数学活动中来。因此这一环节我让学生充分利用计算器,运用不完全归纳法,通过具体丰富的实例验证猜想,让学生用数学语言准确地描述自己发现的规律。引导学生掌握数学规律与知识的获得方法,充分发挥学生学习的主动性,培养学生的合作交流的能力,帮助学生在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,使学生终生受益。

3.实践运用,巩固规律

(1)课本P83想想做做第1题。采用题组的形式让学生应用规律直接写出乘法算式的积。完成后再让学生说说是怎样想的,使学生进一步熟悉积的变化规律。

(2)用规律解释口算、笔算、和简算。

口算:16×5= 16×500= 16 ×5000=

竖式计算:17×5 17×50 17×500

简便计算:125×48=125×8×6

让学生口头回答,体会积的变化规律的应用,进一步明确乘数末尾有0的乘法的口算、笔算方法,以及积的变化规律在乘法计算中的巧妙应用。

(3)补充题:2008年的奥运会在北京举行,小明的爸爸决定去北京观看一些比赛项目,为中国健儿加油。

如果坐汽车,每小时行使60千米,4小时可以多少千米?

如果坐火车,火车的速度是汽车的2倍,同样的时间可以行使多少千米?

这题的第2个问题中蕴含着两种解题思路,让学生说一说、比一比。一种是根据速度×时间=路程的数量关系,先算出变化了的那个因数是多少,再求积。另一种是根据一个因数不变,另一个因数乘以几,原来的积也乘以几解决问题。两种方法得出的积相同,使学生体会积的变化规律是客观存在的普遍规律。

『设计理念』在层次分明,形式多样的练习中,通过让学生想一想、填一填、说一说,使学生在规律的应用中逐步加深对积的变化规律的理解。

4.拓展练习,升华规律

36×5400= 18×24 =

36×540 = 180×240 =

36×54 = 1800×2400 =

『设计理念』这一环节是通过两组题目的计算,让学生用本节课的研究问题的方法继续探索积的变化规律,使得积的变化规律的内涵得到延伸,让学生对这一规律有进一步的理解。

5.总结全课,内化规律

通过今天这节课的学习,你有了什么收获?还有哪些疑问?

『设计理念』在回忆中总结全课,培养学生的反思意识与能力。

四、说板书设计。(见课件)

综观全课,我给学生营造了宽松的学习氛围,让学生在主动观察、讨论交流、猜想验证等数学活动中,通过看、想、说的过程,逐步探索出一个因数不变,另一个因数乘几,积也随着乘几的变化规律。这样的探索过程丰富了学生学习的体验,加深了学生的思考,突破了学生思维和经验的障碍,而且为学生创造了猜测与验证、辨析与交流的空间,激发了他们的学习兴趣,让学生真正成为了学习的主人,使课堂充满生命的活力。

7、四年级上册《积的变化规律》说课稿

教学目标:

1、探索积的变化规律,尝试用数学语言进行描述,并进行简单运用。

2、经历“积的变化规律”的发现、表达和应用的过程,初步获得探索规律的方法和经验,发展概括、推理能力。

3、感受探索、运用规律的乐趣。

教学过程:

一、从生活中来

1、请同学们看屏幕。一只小熊正在乘着热气球去旅行。如果气球以每秒5米的速度上升,那么小熊飞2秒有多高呢?你是怎么想的?列式4秒飞多高,为什么?列式6秒又飞多高,8秒呢,齐,你们说停它就停!准备,起飞,多少米?

2伸出你的手我们来指一指,10秒飞多高?12秒?能列个算式吗?14秒、18秒……什么感觉?越飞越高。为什么会越飞越高呢?有补充吗?当每秒上升的速度不变时,气球飞的时间越长,飞得越高。【引导学生在具体情境中感悟:速度不变时,上升的高度随着时间的变化而变化。】下面请同学们观察黑板上的三个算式,回想一下,乘法算式中,乘号前面的数叫做……乘号后面的数叫做什么,所得的结果叫做……仔细观察,因数、因数、积。谁变了,谁没变?结合这三个算式说说你的发现。积变了,有怎样的变化呢?

二、探索规律

1、发现规律。

请同学们拿出学习单一,有两组算式,大家可以选择其中一组研究,也可以两组都完成。

在研究之前请同学读一读学习建议。

我们来听听他们是怎么思考的

按什么顺序观察的第一个因数,从()到()乘几,第二个因数不变。积也乘几,看来观察得越全面,得到的结论才能越完整。

这两组算式虽然内容不同,但却藏着相同的规律,大家发现了吗?那你能不能写出一组具有这样规律的算式,在学习单二上完成,汇报【引导学生从若干组不同的的算式中,自己探索积的变化与谁的变化有关、有什么关系,并把它们表示出来,从而初步感悟积的变化规律,为抽象、概括规律打好基础。】

2、表达规律。

师:刚才我们通过几组题找到了其中藏着的规律,下面你能把刚才我们发现的规律用最简洁的方式,可以借助一句话、或一组算式表达出来吗?写在学习单的空白处

汇报,强调几相同,0除外。把这条规律写在黑板上。那这条重要的规律就是积的变化规律。

教师借此整理板书,得到积的变化规律。【引导学生个性化的表达,使内隐的认识外显化,并在全班交流中,逐渐完善对规律的认识,发展概括、推理能力。】

3、像刚才那样,我们用大量的不同的例子来概括这个规律的方法,叫做不完全归纳法。

4、应用规律。

1、你能根据8×50400,直接写出下面各题的积。

2、认识吗?小青蛙。这只小青蛙会“吃”数,并且吃进的数与嘴里的数相乘,能“吐”出来一个新数。已知:6×=222抢答:24×=?3×=?问:方块里的数不知道,怎么知道结果的呢?

三、到生活中去

回想一下,这节课我们是怎样得到积的变化规律的?从热气球开始,通过几组算式用不完全归纳法得到了积的变化规律,然后通过青蛙吐数运用了积的变化规律。那谁来说说这节课你有哪些收获呢?运用积的变化规律有什么好处?学了积的变化规律你又产生了哪些猜想?【引导学生有意识的回顾学习过程,初步获得探索规律的一般方法。】

8、四年级上册《积的变化规律》说课稿

今天我说课的内容是积的变化规律,它选自人教版小学数学四年级上册第58页。

一、说教材

积的变化规律是在学生已经学习了三位数乘两位数、用计算器进行计算等知识的基础上进行教学的,它为学生今后学习小数乘法等知识铺平了道路,在本节课中,学生要学习积的变化规律。通过本节课的学习,对于发展学生的运算能力、合情推理能力具有十分重要的作用。

我们都知道,四年级的学生具有一定的经验,能够将新知识转化为已有的知识,但是他们的抽象思维还很弱,在理解积的变化规律的探究过程时会有一定的难度。基于以上对教材的分析和对学情的分析,我将理解积的变化规律确定为本节课的重点,将理解其探究过程确定为本节课的难点。并且拟定了以下三维目标:

1、能理解并掌握积的变化规律,能正确表述积的变化规律,并能正确运用。

2、经历积的变化规律的探究过程,学会观察、猜想、验证、概括的方法,感受变与不变的思想,发展学生的合情推理能力。

3、体验自主探索、合作交流的乐趣,培养学生献爱心的好品质。

二、说教学设想

为了有效地实现教学目标,在实施教学时,我将努力做到以下两个注重:

1、注重探究过程的经历:积的变化规律的探究过程需要经历从直观到抽象,从朦胧到清晰的过程,这过程需要学生通过观察、猜想、验证、概括等数学活动,从而理解积的变化规律,积累数学活动经验。

2、注重变与不变思想的渗透:通过将一个因数不变,另一个因数变化,来探索积的变化规律,发展学生的合情推理能力。

三、说教学流程

(一)创设情境,引入新课

同学们,为了响应学校“节省零花钱,牵手好朋友”的号召,我们班与希望小学四(1)班开展“手拉手,献爱心”活动,请你计算一下,一盒水彩笔6元,如果买2盒要花多少元?买20盒,买200盒呢?请同学们拿出草稿纸列式计算一下,学生会列出算式:6×2=12(元);6×20=120(元);6×200=1200(元)。(设计意图:通过创设“买文具”的具体情境,激活了学生原有的知识,激发了学生的积极性,为探究积的变化规律提供素材,做好铺垫。)

(二)自主探索,理解规律

第一层次:感知规律。观察这组算式,你发现了什么?什么变了,什么没变?先独立思考一下,有了想法之后四人一小组相互讨论,之后教师巡视,全班反馈。我会引导学生从上往下进行观察,学生会发现从①式到②式,从②式到③式,一个因数不变,另一个因数乘10,积也乘10;学生也会发现从①式到③式,一个因数不变,另一个因数乘100,积也乘100。那如果从下往上观察,你又发现了什么?学生会发现从式③到②式,从②式到①式,一个因数不变,另一个因数除以10,积也除以10;学生也会发现从③式到①式,一个因数不变,另一个因数除以100,积也除以100。那谁能用一句简洁的话来说一说你发现的规律,先独立说一说,再同桌之间相互说,从而由学生说出:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。

第二层次:提出猜想。同学们发现的规律是不是具有普遍性呢?我们需要再举一些例子来验证一下,看看会不会出现相同的情况,如果有一个例子出现不同的情况,我们就不能把发现当成规律。

第三层次:验证规律。请每个同学写出3个算式,同桌相互检查,并交流因数和积是怎样变化的?对于学有余力的学生,还可以让他们在别人的算式后面接着写一些。学生会写出7×12=84、7×6=42、7×3=21;或者6×150=900、6×30=180、6×6=36等等。

第四层次:归纳结论。同学们,黑板上这么多算式,现在你能完整地说一说这个变化规律?先独立地说一说,再同桌两人相互说,最后我会指名学生说,从而得出:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。这里除以的数可以为0吗?不能为0,因为0不能作除数。

第五层次:拓展延伸。刚刚大家已经知道了一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。那么如果一个因数不变,另一个因数加(或减)几,积是不是也加(或减)几呢?学生会发现这是不成立的,例如7×(12+1)≠(84+1)。

第六层次:解释应用。我会出示一个神奇缺八数。

12345679×9=111111111

12345679×18=222222222

12345679×27=( )

12345679×36=( )

12345679×45=( )

12345679×( )=( )

通过这个神奇缺八数的应用来让学生感受数学的神奇奥秘。

有效地数学学习是学生学与教师教的统一,在本环节中,通过让学生观察、猜想、验证、概括等数学活动,从而丰富了学生的体会,加深学生对积的变化规律的理解,从而突出重点,突破难点。

(三)学以致用,分层练习

我会将做一做作为基础练,以巩固新知识,检查学生是否理解和掌握积的变化规律。

我会将“一所小学扩建校园,准备将长方形操场的宽度从8变成24米,长不变,扩建前的面积是560平方米,问扩建后的操场面积是多少?”作为综合练,通过这道题来培养学生综合运用知识的能力。

24×75=1800 36×104=3744

(24○6)×(75×6)=1800 (36×4)×(104○4)=3744

(24○3)×(75○□)=1800 (36○□)×(104○□)=3744

我会将这道题作为拓展练,通过计算这几道题目,让学生发现一个因数乘几,另一个因数除以相同的数,他们的积是不变的,从而进行拓展,发展学生的抽象思维。

(四)课堂回眸,内化提升

第四环节:课堂回眸,内化提升。此时,我会请学生来说说这节课你学习到了什么,你有什么需要提醒其他同学注意的吗?从而结束本节课的课题。

9、四年级上册《积的变化规律》说课稿

一、学情分析

本节课内容是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上进行的,因此这节课中,我放手让孩子们自己去计算,去比较,再通过我的适时引导,让孩子用简洁的语言概括出积的变化规律。

二、教学目标

根据对教材和学情的分析,我制定了以下三维目标:

知识目标:使学生结合具体情境,通过计算、观察、比较,发现积随因数变化而变化的规律,并在此基础上放手探讨积的变化规律。

能力目标:培养学生初步的抽象概括能力和数学语言表达数学结论的能力。

情感目标:体验探索和发现数学规律的过程,进一步产生对数学的好奇心与兴趣。

三、教学重难点

教学重点:积随因数的变化规律。

教学难点:引导学生自己发现规律、验证规律、应用规律。

四、教法

我引导学生在具体的情境中通过观察、猜想、验证来自主探索概括出积的变化规律。

五、学法

学生经历观察思考、提出猜想、验证猜想、表述规律、应用规律的自主探索过程,获得探索教学规律的一般经验。

六、教学具及相关资料

小黑板

七、教学流程

谈话导入猜想规律验证规律表述规律,小结探索方法应用规律拓展延伸课堂小结。

八、教学设计过程

1、谈话导入

课的开始我与孩子进行谈话学校为了奖励参加大扫除的学生,每人发一本笔记本,每本笔记本6元,买2本需要多少元钱?买20本,200本呢?孩子你们算算。

根据学生的回答,我板书三个算式及其结果:

62=12(元)

620=120(元)

6200=1200(元)

设计理念:我创造性地利用教材,将纯粹的算式赋予一定的生活意义,让孩子感受数学知识就在身边,从而更大地激发学生的学习兴趣。

(1)我提出问题:观察这三个算式,你会发现什么规律呢?

我引导孩子从上向下观察:因数到因数,积到积有什么规律。

(2)小组交流,集体汇报。让孩子把自己发现的规律讲给同伴听,经过小组内交流,孩子不难提出猜想:一个因数不变,另一个因数乘以几,积就乘以几。

(3)我引导孩子再次从下向上观察,这次孩子很快提出新的规律:一个因数不变,另一个因数除以几,积就除以几。

设计理念:孩子通过独立观察,小组交流,使学生真正体验自主探索和发现数学规律的过程。同时,我活用教材,用一组算式揭示两条规律,先后有序,主次分明。

2、验证规律

孩子都看出规律来了,那么这些规律是不是适合所有的算式呢?下面请孩子自己来验证一下。

我出示小黑板,男生女生分为两组,一组应用规律直接写出结果,另一组用笔算或计算器验证。两组交换角色再次验证。

设计理念:通过学生分组协作,体验验证数学规律的过程。

3、表述规律,小结探索方法。

我首先让学生说规律,趁势解释说明乘以几=扩大几倍,除以几=缩小几倍,学生在以往的基础之上,很容易接受这点。然后引导学生如何把两条规律归纳成一条,得出积的变化规律:两个因数相乘,一个因数不变,另一个因数扩大(或缩小)几倍,积就扩大(或缩小)几倍。我板书规律,揭示本课主题。最后我让孩子们说说这规律是如何得来的?

设计理念:孩子通过对探索过程的反思,逐步形成自己的思维策略。

4、应用规律

孩子自己完成教材1-4题。指明孩子自己说说如何得出结果的。个别孩子可能会提出:我用笔算也挺简单的,那我今天学的有什么用呢。好问题出来了,进入下一环节。

5、拓展延伸。

(1)一个数乘以18积是270,如果这个数乘以54,积是()。

(2)3610=360

(362)(362)=

(363)(363)=

设计理念:通过层次分明,形式多样的练习,可以有效地激发学生学习兴趣,拓展学生的思维空间,使不同的学生得到不同的发展。

6、课堂总结,内化规律。

这节课你学到了什么?学的高兴吗?

设计理念:培养学生自我总结、自我反思的学习能力。

九、教学效果分析

本节课我创造性地活用教材,营造了宽松、自主的学习氛围,孩子们通过看、想、说、做等数学活动,去经历主动观察独立思考小组交流提出猜想验证规律运用规律的过程,丰富了学生学习的体验,培养学生的数学思维。

10、小学四年级上册《积的变化规律》说课稿

小学四年级上册《积的变化规律》说课稿范文

作为一无名无私奉献的教育工作者,可能需要进行说课稿编写工作,编写说课稿助于积累教学经验,不断提高教学质量。那么你有了解过说课稿吗?以下是小编为大家收集的小学四年级上册《积的变化规律》说课稿范文,仅供参考,大家一起来看看吧。

一、说教材

1.教学内容:

这节课内容是人教版四年级上册第三单元的例题、想想、做做第1—4题。

2.教材分析:

本节课是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上,引导学生借助计算器探索积的一些变化规律,掌握这些规律,为学生进一步加深对乘法运算的理解以及今后自主探索和理解小数乘除法的计算方法做好准备。

教材首先出示2×6=12、20×6=120、200×6=1200,让学生依据给出的乘法算式,探索当一个因数不变,另一个因数乘一个数,得到的积会有什么变化,引导学生作出猜想。再列举一些例子,用计算器计算来验证猜想。引导学生观察,学生比较容易发现规律,提出猜想,用计算器进行验证。由于研究的是关于运算的规律,势必涉及较大数的计算,为了将学生的思维从繁杂的计算中解脱出来,使学生更加关注规律的发现过程,所以用计算器作为探索规律的工具。

3.说教学目标

基于以上认识,我从知识和能力、过程与方法、情感态度与价值观三个维度设计了以下教学目标:

(1)借助计算器的计算,使学生探索并掌握一个因数不变,另一个因数乘几,积也随着乘几的变化规律。

(2)经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的基本方法,进一步获得一些探索数学规律的经验,发展思维能力。

(3)通过学习活动的参与,培养学生合作交流的能力,并在探索活动中感受数学结论的严谨性与正确性,获得成功的体验,增强学习数学的兴趣和自信心。

4.教学重点:使学生探索并掌握一个因数不变,另一个因数乘几(或除以几),积也随着乘几(或除以几)的变化规律。

教学难点:在探索和发现规律上,能更多的体验一般策略和方法,发展数学思考。

5.课前准备:课件、学生每人计算器一个、学生每人一张空白表格。

二、说教法和学法

(1)教法:让学生在具体的情境中用观察、验证来探索积的变化规律,教师引导与学生自主探究相结合,充分发挥学生学习的主动性。

(2)学法:通过观察交流,让学生经历提出猜想、验证猜想、表述规律、应用规律的.自主探索过程,获得探索数学规律的经验。

三、说教学过程

结合本课特点,我设计了以下五个教学环节:

1.情境引入,猜想规律

(1)课件出示我校为福利院捐款献爱心的照片,创设我校师生为福利院捐款买物品的情境,已知每千克橙子6元,买2千克多少元?买20千克?买200千克呢?不仅使学生感知捐款的意义,还为学生学习新知创设熟悉的情景。

(2)引导学生列出第一个问题的算式,计算出结果。并使学生清楚地知道算式中的三个数分别叫做一个因数、另一个因数和积。

(1)6×2=12

(2)6×20=120

(3)6×200=1200

(3)引导学生观察、比较,思考积会怎样变化。提出猜想:一个因数不变,另一个因数乘几,积也随着乘几。

『设计理念』这样的设计是想让学生解决生活中的实际问题,激发学生的学习兴趣,培养学生的数感及提出数学猜想的意识和能力。

2.动手操作,验证规律

(1)首先让学生独立用计算器计算出每题的结果并将得到的积与原来的积进行比较,然后组织学生相互交流,初步验证猜想,老师进行小结:经过实际计算,发现这里每一题的计算结果都符合先前的猜想。并进一步提出:这个猜想是不是适合所有的乘法算式?

为您提供优质资源!

为您提供优质资源!

一个因数另一个因数积积的变化

(1)6×2=12

(2)6×20=120

(3)6×200=1200

(2)引导学生举例,进一步验证猜想。同桌相互合作,写出任意一组算式:一个因数不变,另一个因数乘一个数。用计算器或者笔算算出结果,进行比较。全班交流,通过交流进一步确认猜想成立。

(3)语言表述规律,小结探索方法。首先让学生说规律,然后讲出探索的方法:如用计算器计算,提出猜想、验证猜想、不完全归纳等。

『设计理念』新课标当中指出:把现代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意并有更多的精力投入到现实的探索性的数学活动中来。因此这一环节我让学生充分利用计算器,运用不完全归纳法,通过具体丰富的实例验证猜想,让学生用数学语言准确地描述自己发现的规律。引导学生掌握数学规律与知识的获得方法,充分发挥学生学习的主动性,培养学生的合作交流的能力,帮助学生在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,使学生终生受益。

3.实践运用,巩固规律

(1)课本P83想想做做第1题。采用题组的形式让学生应用规律直接写出乘法算式的积。完成后再让学生说说是怎样想的,使学生进一步熟悉积的变化规律。

(2)用规律解释口算、笔算、和简算。

口算:16×5=16×500=16×5000=

竖式计算:17×517×5017×500

简便计算:125×48=125×8×6

让学生口头回答,体会积的变化规律的应用,进一步明确乘数末尾有0的乘法的口算、笔算方法,以及积的变化规律在乘法计算中的巧妙应用。

(3)补充题:2008年的奥运会在北京举行,小明的爸爸决定去北京观看一些比赛项目,为中国健儿加油。

如果坐汽车,每小时行使60千米,4小时可以多少千米?

如果坐火车,火车的速度是汽车的2倍,同样的时间可以行使多少千米?

这题的第2个问题中蕴含着两种解题思路,让学生说一说、比一比。一种是根据速度×时间=路程的数量关系,先算出变化了的那个因数是多少,再求积。另一种是根据一个因数不变,另一个因数乘以几,原来的积也乘以几解决问题。两种方法得出的积相同,使学生体会积的变化规律是客观存在的普遍规律。

『设计理念』在层次分明,形式多样的练习中,通过让学生想一想、填一填、说一说,使学生在规律的应用中逐步加深对积的变化规律的理解。

4.拓展练习,升华规律

36×5400=18×24=

36×540=180×240=

36×54=1800×2400=

『设计理念』这一环节是通过两组题目的计算,让学生用本节课的研究问题的方法继续探索积的变化规律,使得积的变化规律的内涵得到延伸,让学生对这一规律有进一步的理解。

5.总结全课,内化规律

通过今天这节课的学习,你有了什么收获?还有哪些疑问?

『设计理念』在回忆中总结全课,培养学生的反思意识与能力。

四、说板书设计。(见课件)

综观全课,我给学生营造了宽松的学习氛围,让学生在主动观察、讨论交流、猜想验证等数学活动中,通过看、想、说的过程,逐步探索出一个因数不变,另一个因数乘几,积也随着乘几的变化规律。这样的探索过程丰富了学生学习的体验,加深了学生的思考,突破了学生思维和经验的障碍,而且为学生创造了猜测与验证、辨析与交流的空间,激发了他们的学习兴趣,让学生真正成为了学习的主人,使课堂充满生命的活力。

11、四年级《积的变化规律》的优秀说课稿

关于四年级《积的变化规律》的优秀说课稿范文

作为一名默默奉献的教育工作者,常常需要准备说课稿,说课稿有助于学生理解并掌握系统的知识。那么说课稿应该怎么写才合适呢?以下是小编整理的关于四年级《积的变化规律》的优秀说课稿范文,欢迎阅读与收藏。

一、说教材

积的变化规律是在学生已经学习了三位数乘两位数、用计算器进行计算等知识的基础上进行教学的,它为学生今后学习小数乘法等知识铺平了道路,在本节课中,学生要学习积的变化规律。通过本节课的学习,对于发展学生的运算能力、合情推理能力具有十分重要的作用。

我们都知道,四年级的学生具有一定的经验,能够将新知识转化为已有的知识,但是他们的抽象思维还很弱,在理解积的变化规律的.探究过程时会有一定的难度。基于以上对教材的分析和对学情的分析,我将理解积的变化规律确定为本节课的重点,将理解其探究过程确定为本节课的难点。并且拟定了以下三维目标:

1、能理解并掌握积的变化规律,能正确表述积的变化规律,并能正确运用。

2、经历积的变化规律的探究过程,学会观察、猜想、验证、概括的方法,感受变与不变的思想,发展学生的合情推理能力。

3、体验自主探索、合作交流的乐趣,培养学生献爱心的好品质。

二、说教学设想

为了有效地实现教学目标,在实施教学时,我将努力做到以下两个注重:

1、注重探究过程的经历:积的变化规律的探究过程需要经历从直观到抽象,从朦胧到清晰的过程,这过程需要学生通过观察、猜想、验证、概括等数学活动,从而理解积的变化规律,积累数学活动经验。

2、注重变与不变思想的渗透:通过将一个因数不变,另一个因数变化,来探索积的、变化规律,发展学生的合情推理能力。

三、说教学流程

(一)创设情境,引入新课

同学们,为了响应学校“节省零花钱,牵手好朋友”的号召,我们班与希望小学四(1)班开展“手拉手,献爱心”活动,请你计算一下,一盒水彩笔6元,如果买2盒要花多少元?买20盒,买200盒呢?请同学们拿出草稿纸列式计算一下,学生会列出算式:6×2=12(元);6×20=120(元);6×200=1200(元)。(设计意图:通过创设“买文具”的具体情境,激活了学生原有的知识,激发了学生的积极性,为探究积的变化规律提供素材,做好铺垫。)

(二)自主探索,理解规律

第一层次:感知规律。观察这组算式,你发现了什么?什么变了,什么没变?先独立思考一下,有了想法之后四人一小组相互讨论,之后教师巡视,全班反馈。我会引导学生从上往下进行观察,学生会发现从①式到②式,从②式到③式,一个因数不变,另一个因数乘10,积也乘10;学生也会发现从①式到③式,一个因数不变,另一个因数乘100,积也乘100。那如果从下往上观察,你又发现了什么?学生会发现从式③到②式,从②式到①式,一个因数不变,另一个因数除以10,积也除以10;学生也会发现从③式到①式,一个因数不变,另一个因数除以100,积也除以100。那谁能用一句简洁的话来说一说你发现的规律,先独立说一说,再同桌之间相互说,从而由学生说出:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。

第二层次:提出猜想。同学们发现的规律是不是具有普遍性呢?我们需要再举一些例子来验证一下,看看会不会出现相同的情况,如果有一个例子出现不同的情况,我们就不能把发现当成规律。

第三层次:验证规律。请每个同学写出3个算式,同桌相互检查,并交流因数和积是怎样变化的?对于学有余力的学生,还可以让他们在别人的算式后面接着写一些。学生会写出7×12=84、7×6=42、7×3=21;或者6×150=900、6×30=180、6×6=36等等。

第四层次:归纳结论。同学们,黑板上这么多算式,现在你能完整地说一说这个变化规律?先独立地说一说,再同桌两人相互说,最后我会指名学生说,从而得出:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。这里除以的数可以为0吗?不能为0,因为0不能作除数。

第五层次:拓展延伸。刚刚大家已经知道了一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。那么如果一个因数不变,另一个因数加(或减)几,积是不是也加(或减)几呢?学生会发现这是不成立的,例如7×(12+1)≠(84+1)。

第六层次:解释应用。我会出示一个神奇缺八数。

12345679×9=111111111

12345679×18=222222222

12345679×27=()

12345679×36=()

12345679×45=()

12345679×()=()

通过这个神奇缺八数的应用来让学生感受数学的神奇奥秘。

有效地数学学习是学生学与教师教的统一,在本环节中,通过让学生观察、猜想、验证、概括等数学活动,从而丰富了学生的体会,加深学生对积的变化规律的理解,从而突出重点,突破难点。

(三)学以致用,分层练习

我会将做一做作为基础练,以巩固新知识,检查学生是否理解和掌握积的变化规律。

我会将“一所小学扩建校园,准备将长方形操场的宽度从8变成24米,长不变,扩建前的面积是560平方米,问扩建后的操场面积是多少?”作为综合练,通过这道题来培养学生综合运用知识的能力。

24×75=180036×104=3744

(24○6)×(75×6)=1800(36×4)×(104○4)=3744

(24○3)×(75○□)=1800(36○□)×(104○□)=3744

我会将这道题作为拓展练,通过计算这几道题目,让学生发现一个因数乘几,另一个因数除以相同的数,他们的积是不变的,从而进行拓展,发展学生的抽象思维。

(四)课堂回眸,内化提升

第四环节:课堂回眸,内化提升。此时,我会请学生来说说这节课你学习到了什么,你有什么需要提醒其他同学注意的吗?从而结束本节课的课题。

12、四年级语文上册说课稿《搭石》说课稿

学习目标:

1、认识7个生字,会写11个生字。

2、正确、流利、有感情地朗读课文,感受乡亲们默默无闻、无私奉献的精神,并从中受到感染、熏陶。

3、学习作者仔细观察、生动描写的方法,培养留心观察、用心感受的习惯。

教学重难点:

1、让学生从乡亲没们摆搭石、走搭石的一幕幕情景中,体会其中的人性美;

2、学习作者从不起眼的事物中发现美、感受美。

教学流程:

一、齐读课题,谈谈对搭石的了解。通过预习,你对搭石有哪些了解?

二、学习第一自然段

自读本段,你明白了什么?人们是怎样挑选、摆放搭石的?找出文中的词语理解体会。

“平整方正”是为了让人们……按照“两尺左右”的间隔均匀摆放是为了……从中感受乡亲们的'善良、质朴。

三、提纲挈领学习2—4自然段

在这美丽的山村,搭石成了一道亮丽的风景,让我们睁大眼睛发现美、一起来欣赏美。

1、指名分段读二三四自然段,边听边想象,说说你都见到了哪些美丽的画面。

2、生谈自己发现的美

①老人及时调整搭石

②一行人协调有序地过搭石

③两人相遇,招手礼让;遇见老人,背负过溪。

3、欣赏第一幅:读段落想象,老人踩到不稳的搭石会怎样想,表情、动作会怎样?挑选合适的石头时,会怎样想怎样做?满意离去时,会是怎样的心理、表情、动作?

讨论后表演有感情地朗读。

4、欣赏第二幅:听读,说说你看到了什么,听到了什么?理解“紧走搭石慢过桥”,进一步感受乡亲们相亲相爱,生活默契,所以动作协调。配乐感情朗读,读中体会美好情感。

5、欣赏第三幅:用自己喜欢的方式读拿起笔发现美、寻找美。然后各抒己见。重点体会“理所当然”感悟每一位乡亲都是这么做的,都具有无私奉献精神。

四、用朗读来理解最后的段落

在反复的朗读中,悟出无私的搭石正是乡亲们默默无闻、无私奉献的写照,也是乡亲们相亲相爱、友好互助情感的纽带。

13、五年级上册《点阵中的规律》说课稿

第一部分:教材分析

1、教材地位作用

尝试与猜测这部分内容是《标准》中的数形结合思想在教材中的具体体现,它从“中国古代名题”延伸到“普遍联系找规律”,其中内容广,想法深,理念新是教材的一大特色。《点阵中的规律》看起来似乎对学生很陌生,与其他知识没有必然的联系,是一节相对独立的数学活动课,其实在前面的学习中学生已经接触过一些,如:一年级的找规律填数,二年级的按规律接着画,以及四年级探索图形的规律,都是逐步将数形结合在一起,将知识进行进一步提升。使学生通过观察、推理等活动,在生动的情景中找出图形的变化规律,培养学生的观察、想象与归纳概括能力,提高学生合作交流与创新的意识。

2、教学目标

基于以上的认识和新课标对第一学段的数学学科要求,我从“知识与技能、过程与方法、情感态度与价值观”三个方面制定本课的教学目标:

(1)、让学生在生动有趣的活动中观察、寻找图形的特点,从而探索出点阵中的规律,并体会到图形与数的联系;

(2)、通过活动教学培养了学生归纳、概括和逻辑抽象思维的能力,让学生感受数学与生活的密切联系。

(3)、增强学生审美观念,培养学生的审美能力。

3、教学重点:引导学生发现和概括点阵中的规律。

4、教学难点:寻求多种解决问题的方法,体会图形与数的联系。

第二部分:教法学法设计

教法安排

本节课我运用了活动教学形式,通过创设找朋友的游戏情境,给学生提供较大的思维空间,大胆放手让学生主动去探索新知,引导他们通过独立思考、组内合作学习,以及组间相互汇报、交流、提问、评价等方式,归纳总结出中的规律,充分体会图形与数的联系。

学法体现

五年级学生善于动手操作、探究能力较强,根据这一年龄特点,将自主探究和小组合作进行综合运用,让学生通过想一想,说一说,粘一粘等形式,体验自主学习,探究新知,尝到发现数学的滋味。

第三部分:设计思路

为了体现以学生为本的课堂教学理念,针对瞬息万变的课堂教学实际,我对教学内容进行了理性的重组:首先利用常见的五子棋、跳棋让学生理解什么是点阵,再通过生动有趣的找朋友活动,为学生呈现了形似正方形、长方形、三角形的部分点阵图,让学生发现概括点阵中的规律,从而计算出后面图形点的数量,其次,为学生演示了点阵的划分方法,引导学生发现新的规律,并列出算式,让他们体会到点阵研究数的形式可以是多样的,并通过独立思考和合作交流完成练习,最后为学生呈现了生活中的点阵。

第四部分:教学程序

(一) 课始激趣,兴趣盎然

出示学生熟悉的五子棋、跳棋,让他们直观地看到:象这样有规律排列的点子图在数学中可称之为 “点阵”,从而引出课题:点阵中的规律。

(二) 课中参与,兴趣正浓

1、师贴出正方形、长方形、三角形点阵图中的部分图形,将其余图形发给小组内的学生,请他们玩找朋友游戏,将手中的图形在黑板上对号入座。(先独立思考,再小组交流) 2、请小组派代表按点阵中的规律贴图,并说一说想法。

3、让学生进一步观察思考,通过互评将规律补充完整的同时,教师适时引导:“想计算每个点阵中有多少个点子该怎么办呢?”“如果每个点阵中点的个数再多一些,该怎样快速求出点阵中点的个数呢?”

4、以正方形点阵为例,鼓励他们用多种方法计算的同时,引导学生将总结的规律抽象成算式。

5、请学生运用发现的这一规律说出第五个正方形点阵有多少点,试着画出图形,并说一说想法。

6、同理,请学生总结出长方形点阵的规律,并列式计算。

7、请学生继续寻找三角形点阵的规律,并写出算式。适时引入划分法,让他们说说三角形点阵有没有其它的划分方法。

8、让学生用划分法将第五个正方形点阵图进行划分,并根据学生的课堂生成情况灵活的出示“折线划分法”,使学生体会到通过点阵研究数的形式可以是多样的。

(三) 课末设疑,兴趣犹存

1、按下面的方法划分点阵中的点,并填写算式。

(请学生独立完成,,通过图中的划分可以轻松列出算式。)

2、观察下列图形的规律并填空。

(此题是总复习中练习,让学生寻找规律的同时,也培养了学生的想象能力。)

3、观察下图中已有的几个图形,按规律画出一个图形。

(为了使有困难的学生生动地理解图形变化的规律,我采用了不同颜色标出了每次的变化情况。)

第五部分:拓展应用

为了使学生体验到数学知识与生活的密切联系,设计了拓展应用,运用课件为学生展示了点阵在生活中的实际应用。

课堂小结:

引导学生回忆总结:“通过这节课的学习,有什么收获?它对我有什么帮助?这节课表现的怎样?”或者反思探究过程中的问题,达到思想共享的目的。

(这种开放式的总结,给学生提供了自我感悟、自评与互评的时间和空间,有利于培养学生的反思意识。)

这节课我本着“充分预设,关注生成”的态度,让学生自主的探究,解决数学问题,获取数学经验”。 在现实情境中,有意识地采用“自主探究,合作交流”等活动方式,让学生亲身经历发现规律、归纳概括的全过程,同时,为学生提供了轻松愉悦的教学环境,让他们学习有价值的数学,不同的学生在数学上得到不同的发展。

14、五年级上册《点阵中的规律》说课稿

一、说教材

本节课是北师大版实验教材五年级上册的内容,之前,学生已学过了加法、乘法、长方形正方形的面积计算,以及代数的初步知识,具备了一定的观察和归纳能力,教材在本册安排这个知识,目的主要有2个1、让学生体会图形与数字的联系。2、进一步发展学生观察归纳和概括的能力。

二、说重难点

本节课的重点在于让学生在活动中感知图形与数字的联系,培养学生能从多个角度观察同一个事物的意识。在教学中,我设计了一道例题和4道习题,都从不同程度引导学生从多个角度观察点阵,归纳并概括出点阵的变化规律。本节课的难点在于:如何组织和引导学生从不同角度发现点阵的变化规律,并能用代数法表示点阵的变化规律。为了突破这一难点,我先从一道学生们容易接受的方形点阵入手,引导学生从多角度观察和归纳规律。在学生具备了一定的意识和归纳技巧后,又按照从易到难的梯度设计了4道习题,分别组织了学生以自主探究和小组合作等活动形式,使学生的观察和归纳能力进一步提升,最后一道“我想我创”的习题设计,使学生的观察和归纳能力得到升华。

三、说教法

本年段的学生,具备有一定的观察、归纳和概括的能力,所以我例题和第1、2道习题设计中,我采用了由学生自主独立观察和概括,师生共同订正的方式展开教学。第3、4道习题稍有难度,我采取了让学生小组合作交流的方式,来突破难点,同时,我还用到了演示、类比、提示等方法帮助孩子们突破难点。

四、说教学过程

首先,我以让学生欣赏国庆阅兵仪仗队图片,引入点阵的概念,引导点阵中有很多数学规律,然后引出例题:正方形点阵。通过学生独立观察和思考,归纳点阵的规律,并要求学生用算式表示点数,引导学生从不同角度进行观察,总结出点阵规律的多样性,并鼓励学生从不同角度进行观察。第三,练习环节:我分别设计了“荷叶点阵”“武僧点阵”和“螺旋点阵”,均按照从简单到复杂,从形象到抽象的原则进行设计。第四,图片欣赏环节,目的有两个

1、从中感受数学知识与日常生活的紧密联系,激发学生的学习兴趣。

2、让学生适度休息,为下一环节做好准备。

最后一环节:开放性作业,主要是想通过学生自主设计,来培养学生运用知识解决生活问题的能力,也允许不同程度的学生学习“不同”的数学。

五、实际完成计划和目标的情况

从整体来看,我基本按照课前预设的方案完成了课堂教学。较好的方面有教学环节完整,层次分明。不足之处主要有以下几点

1、上公开课的经验不足,有些紧张,情绪和状态调节到最佳。

2、组织活动的方法比较单一,只是加分加分,再加分,缺乏灵活多样且让学生喜闻乐见的教学方法,所以不足以唤起学生探究知识的兴趣。

3、 准备不足,没有充分挖掘教材,整合教材,教学设计还有待于进一步修订,课件也要进一步修改。

上好一节优秀的.公开课,并非一朝一夕的事情,需要老师在平时的教育教学中大量的积累教学经验,掌握教学技能,不断的提升自己课堂组织能力,还需要很多教育教学专家的指导和帮助,他需要授课老师通过很多遍的修改,试讲,再修改,再试讲,一遍一遍的磨出来。总而言之,自己在以上方面均有不足,以后,我一定要多争取上公开课的.机会,锻炼自己的能力,积极的向名师专家请教,不断提升自己组织教学活动的能力,我有信心在两年内就能上出一节优秀的公开课。希望大家监督,指正。

15、五年级上册数学《点阵中的规律》的说课稿

教材内容:

北师大版五年级数学上册第82-83页内容。

《点阵中的规律》属于尝试与猜测部分的内容,这部分内容是《新课程标准》中的数形结合思想在教材中的具体体现,看起来似乎对学生很陌生,与其他知识没有必然的联系,是一节相对独立的数学探究课,其实在前面的学习中学生已经接触过一些,如:一年级的找规律填数,二年级的按规律接着画,以及四年级探索图形的规律,都是逐步将数形结合在一起,将知识进行进一步提升。使学生通过观察、推理等活动,找出图形的`变化规律,培养学生的观察、推理与归纳概括能力。

教学目标:

(1)结合具体的图形,认识“点阵”,了解点阵的基本知识。

(2)能在具体的观察活动中,发现点阵中隐藏的规律,体会图形与数的联系。

(3)培养学生观察、概括与推理的能力。

教学重点:

通过观察活动,引导学生发现和概括点阵中的规律。

教学难点:

寻求多种解决问题的方法,体会图形与数的联系。

教法学法:

教法安排:本节课我运用了活动教学形式,给予更多的空间让学生主动去探索新知,引导他们通过独立思考、相互交流,最后归纳出点阵中的规律。

学法安排:将自主学习与老师引导相结合,让学生通过自主探究,结合老师的引导,寻求规律,尝试发现数学的乐趣。

教学过程:

第一环节,创设情景,导入新课

首先,出示北京奥运会开幕式击缶方队录像,通过震撼、整齐的击缶方队去抓住学生的注意力;接着出示击缶方阵图,随即告诉学生:如果我们将每一个队员看做成一个点,就形成了点子图,这样一个点子图,早在2000多年前古希腊数学家们就给它取名叫“点阵”,而且在这些点阵中还隐藏着许多的规律,这样一来不仅把方队(方阵)变成点阵,而且自然地引出了新课,还让学生感到点阵并不神秘,点阵就在我们生活中。

第二环节:探究新知,总结规律。

出示一组点阵图,让同学们自己先观察这个点阵图,根据图形特征来思考第五幅图该怎么画(学生动手操作)。学生通过动手操作并从中探索规律,然后汇报,由我引导出最终的结果:第几个点阵就是几×几,如果用n来代替点阵图的序数,那么可以将规律表示为n×n。

刚才用的是从点阵图的外形特征出发,发现并找到解决外形点阵中点的特点的方法,如果现在我们换个角度,还能不能找出点阵的规律呢?引导学生“斜着看”。引导学生用数学表达式来表示点阵中所有点的数目,并依此写出后几个点阵图点数的数学表达式,总结规律:第几个点阵就从1连续加到几,再反过来加回到1。

做到这还不够,继续引导学生再换个角度,看有没有新发现?随即引导学生“拐弯看”,让学生根据折线划分后的点阵图自己探究规律并用数学表达式总结规律。即:第几个点阵图就是从1开始加连续的几个奇数。第n个就是要从1加到2n-1(在这可能学生对2n-1很难概括出来,须适时引导)

第三环节:应用方法,解决问题

试一试(第一题):在本道题的规律发现中,要让学生自己感觉图形的特点,并结合1×2的含义完成练习,完成练习后让学生再思考为什么你写出这样的算式。再让学生思考这组点阵图的规律,规律总结为:第n个点阵图中的点阵数目是n×(n+1)。

试一试(第二题),本道题直接让学生独立完成,完成后评讲,为什么可以得到15的结果,学生汇报后,总结一下,第n个点阵图的点阵数目是1+2+3+…+n。

第四环节:课堂回顾,总结收获

让同学们回顾本节课内容:1、点阵中的规律可以从点阵的形状入手;2、从不同的观察点,用不同的划分的方法也可以发现点阵的规律;3、点阵的规律用算式来表达更加的方便。

最后,为了使学生体验到数学知识与生活的密切联系,设计了拓展应用,运用课件为学生展示了点阵在生活中的实际应用。并以古希腊数学家的一句名言来结束本堂课。

各位领导、各位老师,以上是我对本课的教学设计;恳请各位老师批评指导。我的说课完毕,谢谢大家!

16、五年级上册数学《点阵中的规律》说课稿

我说课的内容是北师版小学数学第九册第五单元的最后一课《点阵中的规律》。我将这次说课分为以下几个部分:

第一部分:教材分析

1、教材地位作用

尝试与猜测这部分内容是《标准》中的数形结合思想在教材中的具体体现,它从“中国古代名题”延伸到“普遍联系找规律”,其中内容广,想法深,理念新是教材的一大特色。《点阵中的规律》看起来似乎对学生很陌生,与其他知识没有必然的联系,是一节相对独立的数学活动课,其实在前面的学习中学生已经接触过一些,如:一年级的找规律填数,二年级的按规律接着画,以及四年级探索图形的规律,都是逐步将数形结合在一起,将知识进行进一步提升。使学生通过观察、推理等活动,在生动的情景中找出图形的变化规律,培养学生的观察、想象与归纳概括能力,提高学生合作交流与创新的意识。

2、教学目标

基于以上的认识和新课标对第一学段的数学学科要求,我从“知识与技能、过程与方法、情感态度与价值观”三个方面制定本课的教学目标:

(1)、让学生在生动有趣的活动中观察、寻找图形的特点,从而探索出点阵中的规律,并体会到图形与数的联系;

(2)、通过活动教学培养了学生归纳、概括和逻辑抽象思维的能力,让学生感受数学与生活的密切联系。

(3)、增强学生审美观念,培养学生的审美能力。

3、教学重点:引导学生发现和概括点阵中的规律。

4、教学难点:寻求多种解决问题的方法,体会图形与数的联系。

第二部分:教法学法设计

教法安排

本节课我运用了活动教学形式,通过创设找朋友的游戏情境,给学生提供较大的思维空间,大胆放手让学生主动去探索新知,引导他们通过独立思考、组内合作学习,以及组间相互汇报、交流、提问、评价等方式,归纳总结出中的规律,充分体会图形与数的联系。

学法体现

五年级学生善于动手操作、探究能力较强,根据这一年龄特点,将自主探究和小组合作进行综合运用,让学生通过想一想,说一说,粘一粘等形式,体验自主学习,探究新知,尝到发现数学的滋味。

第三部分:设计思路

为了体现以学生为本的课堂教学理念,针对瞬息万变的课堂教学实际,我对教学内容进行了理性的重组:首先利用常见的五子棋、跳棋让学生理解什么是点阵,再通过生动有趣的找朋友活动,为学生呈现了形似正方形、长方形、三角形的部分点阵图,让学生发现概括点阵中的规律,从而计算出后面图形点的数量。

其次,为学生演示了点阵的划分方法,引导学生发现新的规律,并列出算式,让他们体会到点阵研究数的形式可以是多样的,并通过独立思考和合作交流完成练习,最后为学生呈现了生活中的点阵。

第四部分:教学程序

(一)课始激趣,兴趣盎然

出示学生熟悉的五子棋、跳棋,让他们直观地看到:象这样有规律排列的点子图在数学中可称之为“点阵”,从而引出课题:点阵中的规律。

(二)课中参与,兴趣正浓

1、师贴出正方形、长方形、三角形点阵图中的部分图形,将其余图形发给小组内的学生,请他们玩找朋友游戏,将手中的图形在黑板上对号入座。(先独立思考,再小组交流)

2、请小组派代表按点阵中的规律贴图,并说一说想法。

3、让学生进一步观察思考,通过互评将规律补充完整的同时,教师适时引导:“想计算每个点阵中有多少个点子该怎么办呢?”“如果每个点阵中点的个数再多一些,该怎样快速求出点阵中点的个数呢?”

4、以正方形点阵为例,鼓励他们用多种方法计算的同时,引导学生将总结的规律抽象成算式。

5、请学生运用发现的这一规律说出第五个正方形点阵有多少点,试着画出图形,并说一说想法。

6、同理,请学生总结出长方形点阵的规律,并列式计算。

7、请学生继续寻找三角形点阵的规律,并写出算式。适时引入划分法,让他们说说三角形点阵有没有其它的划分方法。

8、让学生用划分法将第五个正方形点阵图进行划分,并根据学生的课堂生成情况灵活的出示“折线划分法”,使学生体会到通过点阵研究数的形式可以是多样的。教育论文在线

(三)课末设疑,兴趣犹存

1、按下面的方法划分点阵中的点,并填写算式。

(请学生独立完成,,通过图中的划分可以轻松列出算式。)

2、观察下列图形的规律并填空。

(此题是总复习中练习,让学生寻找规律的同时,也培养了学生的想象能力。)

3、观察下图中已有的几个图形,按规律画出一个图形。

(为了使有困难的学生生动地理解图形变化的规律,我采用了不同颜色标出了每次的变化情况。)

第五部分:拓展应用

为了使学生体验到数学知识与生活的密切联系,设计了拓展应用,运用课件为学生展示了点阵在生活中的实际应用。

课堂小结:

引导学生回忆总结:“通过这节课的学习,有什么收获?它对我有什么帮助?这节课表现的怎样?”或者反思探究过程中的问题,达到思想共享的目的。

(这种开放式的总结,给学生提供了自我感悟、自评与互评的时间和空间,有利于培养学生的反思意识。)

这节课我本着“充分预设,关注生成”的态度,让学生自主的探究,解决数学问题,获取数学经验”。在现实情境中,有意识地采用“自主探究,合作交流”等活动方式,让学生亲身经历发现规律、归纳概括的全过程,同时,为学生提供了轻松愉悦的教学环境,让他们学习有价值的数学,不同的学生在数学上得到不同的发展。

说课稿一等奖推荐更多+
相关信息
相关栏目
说课稿一等奖 幼儿园教学设计 教学设计 语文教案 教案一等奖