时间:2023-06-24 17:34:02
类别:说课稿一等奖
直线的两点式方程说课稿一等奖
一、教材分析
(一)教材前后联系、地位与作用
直线的两点式方程是普通高中课程标准实验教科书(人教版)高一年级数学必修2第三章第二节中的内容。本节课是在学习直线的点斜式方程的基础上,引导学生根据除了已知一个点和斜率求直线方程的方法和途径外探讨已知两点来求直线方程。在求直线的方程中,直线方程的点斜式是最基本的,而直线方程的斜截式、两点式都是由点斜式推出的。在推导直线方程的两点式时,根据直线方程的点斜式这一结论,先猜想确定一条直线的条件,再根据已知的两点猜想得到的条件求出直线的方程。在应用直线两点式方程及截距式方程应注意满足的条件。
(二)教学目标根据课程标准的要求和学生的实际情况,我确定本节课的教学目标如下:
1、知识与技能
(1)理解直线方程的两点式、截距式的形式特点和适用范围;
(2)能正确利用直线的两点式、截距式公式求直线方程。
3)体会直线的'截距式方程的几何意义。
2、过程与方法
(1)在已知直角坐标系内确定一条直线的几何要素——直线上的两点的基础上,通过师生探讨,得出直线的斜率,然后根据直线的点斜式方程得出直线的两点式方程;
(2)学生通过对比理解“截距”与“距离”的区别。
3、情感、态度与价值观
(1)通过让学生体会直线的点斜式方程与两点式方程的关系,培养学生的知识的互相联系性。
(2)再根据截距的图像性质进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。
(三)教学重点与难点根据教学目标的确定,并结合学生的认知水平,我确定本节课的重点和难点如下:
重点:直线的两点式方程和截距式方程,两点间的中点公式。
难点:直线的两点式方程和截距式方程的推导及应用。
二、学情分析
班学生数学基础比较好,在解题能力特别是抽象思维的能力比较理想。但本节课对学生的分析能力和分类讨论能力有一定要求,特别是用分类讨论思想来解决问题的能力,学生学习起来可能有一定难度,所以需要老师逐渐的引导。
三、教法与学法
(一)教法
本节课主要采取“分析法”“讨论法”“归纳法”相结合进行教学,同时还利用多媒体进行辅助,增强动感和直观性。在整个教学过程中,引导学生观察,分析,概括,归纳,使学生思维紧紧围绕“问题”层层展开。培养学生学习的兴趣,也充分体现以教师为主导,学生为主体的教学理念。
(二)学法
通过本节课的教学,不仅要让学生学会知识,更重要的是由学会变为会学,让学生在探究活动中,自主探究知识,逐步掌握自主获得知识的学习方法。
四、教学程序设计
问题设计意图
师生活动1、利用点斜式解答如下问题:
(1)已知直线经过两点,求直线的方程。
(2)已知两点其中,求通过这两点的直线方程。遵循由浅及深,由特殊到一般的认知规律。使学生在已有的知识基础上获得新结论,达到温故知新的目的。
教师引导学生:根据已有的知识,要求直线方程,应知道什么条件?能不能把问题转化为已经解决的问题呢?在此基础上,学生根据已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程:(1)
(2)教师指出:当时,方程可以写成由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式(two—point form)。
2、若点中有,或,此时这两点的直线方程是什么?
使学生懂得两点式的适用范围和当已知的两点不满足两点式的条件时它的方程形式。
教师引导学生通过画图、观察和分析,发现
当xx时,直线与轴垂直,所以直线方程为:xxxxxx;
当xx时,直线与轴垂直,直线方程为:xxxxxx。
问题设计意图
师生活动3、
例3教学已知直线与轴的交点为A,与轴的交点为B,其中,求直线的方程。
使学生学会用两点式求直线方程;理解截距式源于两点式,是两点式的特殊情形。
教师引导学生分析题目中所给的条件有什么特点?可以用多少方法来求直线的方程?那种方法更为简捷?然后由求出直线方程:
教师指出:的几何意义和截距式方程的概念。
4、例4
教学例1:已知三角形的三个顶点A(—5,0),B(3,—3),C(0,2),求BC边所在直线的方程,以及该边上中线所在直线的方程。
例2:求经过点P(—5,4),且在两坐标轴上的截距相等的直线方程。
例3:求经过点P(0,5)且在两坐标轴的截距为2的直线方程例4已知直线l经过点P(1,2),并且点A(2,3)和点B(4,—5)到直线l的距离相等,求直线l的方程。
让学生学会根据题目中所给的条件,选择恰当的直线方程解决问题。
教师给出中点坐标公式,那么其中点坐标为。
学生根据自己的理解,选择恰当方法求出边BC所在的直线方程和该边上中线所在直线方程
。在此基础上,学生交流各自的作法,并进行比较。先根据有可能存在的几种情况然后根据截距式方程的特点得出。
分析截距与点的关系然后进行进一步解题。强调距离的特点。
5、课堂练习第97页第1、2、3题。
学生独立完成,教师检查、反馈。强化本节课所学的知识
6、小结
(1)掌握直线方程两点式和截距式的发现和推导过程
(2)能运用这两种形式求出直线的方程
(3)掌握两点间中点坐标的求法增强学生对直线方种四种形式(点斜式、斜截式、两点式、截距式)互相之间的联系的理解。
教师提出:(1)到目前为止,我们所学过的直线方程的表达形式有多少种?它们之间有什么关系?
(2)要求一条直线的方程,必须知道多少个条件?
(3)使学生对本节课有一个系统的认识,同时养成良好的学习习惯。
7、布置作业
教科书第100页习题3.2A组:3,4,8题
巩固深化,培养学生的独立解决问题的能力。
学生课后完成通过作业,反馈教学效果,提高有效教学。
五、板书设计
3.2.3直线的一般式方程多媒体投影例题练习:
我本节课说课的内容是直线的点斜式和斜截式方程。
新课标指出,学生是教学的主体。教师要以学生活动为主线。在原有知识的基础上,构建新的知识体系。我将以此为基础从教材地位和内容分析,教学目标分析,重点和难点分析,教法和学法分析,教学过程分析这几个方面加以说明。
一、教材地位和内容分析
直线方程初步体现了解析几何的实质——用代数的知识来研究几何问题。直线作为最常见的几何图形,在生产实践和生活应用中都有着广泛的应用。直线的方程是是解析几何的基础知识,对后续圆、直线和圆的位置关系、圆锥曲线等内容的学习,无论从知识上还是方法上都有着积极的作用。
二、教学目标分析
1、识记直线的点斜式和斜截式方程,了解其推导过程
2、会根据已知条件熟练求出直线的方程
3、培养学生主动探究知识、合作交流的.意识
三、重点与难点分析
重点:会根据已知条件熟练求出直线的方程
难点:直线点斜式方程的推导
四、教法与学法分析
1、教法分析
遵循“教师的主导作用和学生的主体地位相统一的教学规律”,本节课通过教师点拨,启发学生自主探究来达到对知识的发现和接受。
2、学法分析
本节课所面对的是职高二年级的学生,这个年龄段的学生思维活跃,求知欲强,但思维习惯还有待教师引导。本节课从学生原有的知识和能力出发,教师将带领学生创设疑问,通过合作交流,共同探索,寻求解决问题的方法。
五、教学过程分析
根据新课标的理念,我把整个的教学过程分为几个阶段:
1、温故知新
上课前复习特殊角的正切值以及斜率的求法,为研究新课打下基础。
2、创设情境
直线是点的集合,求直线方程实际上就是求直线上点的坐标所满足的一个等量关系。因此在教学中我把探究的过程变成一个问题来进行。
问题:已知一直线过一定点,且斜率为k,则直线是唯一确定的,也就是可求的,怎样求直线L的方程?
3、探求新知
学生带着问题预习,分组讨论,合作交流,共同研究出直线的点斜式方程。教师巡视指导答疑。
在此基础上,找学生在黑板上讲解其推导过程,师生共同点评。
注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的。为以后学习曲线与方程打好基础。教学中让学生感觉到这一点就可以。不必做过多解释。
教师点明:上述方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式方程.
4、深入探究
问题1:X轴所在直线方程是什么?与X轴平行的直线方程是什么?
通过这个问题让学生注意点斜式的特殊情况。
问题2:Y轴所在直线方程是什么?与Y轴平行的直线方程是什么?
通过这个问题让学生注意点斜式直线方程的使用范围:即在斜率存在的情况下才可以使用。
问题3:如果直线L的斜率为K,且与Y轴的交点坐标为(0,b),求直线L的方程。
通过这个问题引出直线的斜截式方程。
教师说明:我们把直线L与Y轴交点(0,b)的纵坐标b叫做直线L在Y轴上的截距。这个方程是由直线的斜率K与它在Y轴上的截距b确定,所以叫做直线的斜截式方程。
注:(1)截距可取任意实数,它不同于距离。
(2)斜截式方程中的K和b有明显的几何意义。
(3)斜截式方程的使用范围和斜截式一样。
5、应用举例
求下列直线方程:
(1)直线经过点P(1,2),倾斜角为
(2)直线经过点、
学生相互讨论,自主完成。教师深入学生中,了解其思路,纠正其错误,并规范书写过程。
6、反馈练习
P53:3、4,B组2
7、课堂小结
让学生谈谈本节课都学习了哪些内容
8、布置作业
必做题:A组2(2)、4
选做题:B组1
1教学目标
知识与技能:理解直线方程的点斜式、斜截式的形式特点和适用范围;能正确利用直线的点斜式、斜截式公式求直线方程
过程与方法:通过由两点求直线斜率让学生自己导出直线点斜式方程,再有直线与Y轴的交点和直线斜率导出斜截式方程
情感态度与价值观:培养学生的自学能力,和合作能力
2学情分析
学生没有独立思考的习惯,数学底子比较弱,需要教师耐心引导才能完成课堂学习过程
3重点难点
教学重点:点斜式方程、斜截式方程
教学难点:点斜式方程和斜截式方程的应用
4教学过程
4.1直线的点斜式方程教学活动活动1【导入】直线的点斜式方程
平行:对于两条不重合的直线l1、l2,其斜率分别为k1、k2,有l1‖l2k1=k2.
垂直:如果两条直线l1、l2都有斜率,且分别为k1、k2,则有l1⊥l2k1k2=-1
条件:都有斜率
活动2【讲授】直线方程的概念
如果以一个方程的解为坐标的点都在某条直线上,反过来,这条直线上的点的坐标都是这个方程的解,那么,这个方程就叫做这条直线的方程,这条直线就叫做这个方程的直线.
活动3【活动】直线的点斜式方程:
已知直线l经过已知点P1(x1,y1),并且它的斜率是k,求直线l的方程。
活动4【活动】直线的点斜式方程:
(1)、当直线l的倾斜角是00时,tan00=0,即k=0,这时直线l与x轴平行或重合l的方程:y-y1=0或y=y1
(2)、当直线l的倾斜角是900时,直线l没有斜率,这时直线l与y轴平行或重合
l的方程:x-x1=0或x=x1
活动5【练习】点斜式方程的应用
例1:一条直线经过点P1(-2,3),倾斜角α=450,求这条直线的方程。
活动6【测试】写出下列直线的点斜式方程:
活动7【测试】说出下列点斜式方程所对应的直线斜率和倾斜角:11;
活动8【活动】直线的斜截式方程:
已知直线l的斜率是k,与y轴的交点是P(0,b),求直线方程。
活动9【讲授】直线的斜截式方程
直线l与y轴交点(0,b)的纵坐标b叫做直线l在y轴上的截距。方程是由直线的斜率k与它在y轴上的截距b确定,所以方程叫做直线的斜截式方程,简称斜截式。
活动10【讲授】直线的斜截式方程
斜截式方程:y=kx+b几何意义:k是直线的斜率,b是直线在y轴上的截距
活动11【练习】例2:斜率是5,在y轴上的截距是4的直线方程。活动12【测试】写出下列直线的斜截式方程:活动13【作业】总结作业
①直线的点斜式,斜截式方程在直线斜率存在时才可以应用。
②直线方程的最后形式应表示成二元一次方程的一般形式。
老师们同学们大家好,今天我说课的内容是《直线的点斜式方程》,下面我将从教学内容、教法分析、教学目标、教学重难点和教学流程五个方面进行阐述。
一、教材分析:
教材内容,《直线的点斜式方程》选自苏教版数学必修二,其主要内容是直线的点斜式方程和斜截式方程。在本节课的学习中,学生们将迈出探究解析几何学知识的第一步,在“数”和“形”之间建立联系。这为后续学习直线与直线的位置关系等内容,提供了重要的思想方法。
学情分析
高一学生具有一定直观感知能力,也具备一次函数和直线的斜率等知识储备,但还没有尝试过用代数方法解决几何问题,同时分析论证的能力有待提高,因此在概念的推导过程中可能会比较困难。
二、教学方法:
其次,关于教学方法,新课标的基本理念之一是倡导积极主动、勇于交流的学习方式,因此是本节主要课采用“设问-探索-归纳-定论”的探究式教学,结合分组讨论的环节,营造“教师为主导,学生为主体”的乐学课堂。
三、教学目标:
根据教学内容,本节课的教学目标分为三个维度:
在知识与技能方面:能叙述直线点斜式方程与斜截式方程的概念,能运用点斜式方程和斜截式方程解决问题;
在过程与方法方面:体会直线方程与一次函数之间的关系,培养数形结合、转化化归的数学思想。
在情感、态度和价值观方面:通过独立思考与分组讨论,培养探究意识及合作精神,激发努力思考、获得新知的学习热情。
四、教学重难点:
由于本节课是首次学习直线方程的表示方法,因此把直线的点斜式方程与斜截式方程的概念设置为教学重点。
同时,直线点斜式方程和斜截式方程的推导过程超出了学生对代数和几何知识的原有认知水平,因此教学难点便设定为直线的点斜式方程与斜截式方程的推导。
五、教学过程:
接下来我再来详细介绍一下本节课的教学过程。
1、以旧带新,设问激疑:
第一个环节是以旧带新,设问激疑。在回顾之前学习的直线的斜率知识后,我将提出这样一个问题:已知一条直线的斜率及直线上一个点的坐标能否确定直线方程?通过这一问题,激发起学们生独立思考的积极性。
2、探究问题,获得新知:
第二个环节是探究问题,获得新知。我在ppt上展示2组直线方程及其图象,并提出几个问题,如图中直线的斜率是什么?
图中定点的坐标是什么?
如何用已知的斜率和坐标来表示直线?
这一过程中,通过问题链来引导学生用已知点的坐标表示直线斜率,再将所得的关系式转化为直线方程,完成对直线点斜式方程的推导。类比相同方法也完成对直线斜截式方程的推导,突破本节课的教学难点。
3、分组讨论,内化提高:
第三个环节是分组讨论,内化提高。我将给出几组针对新知识的细节,具有启发性的问题,如坐标轴所在的直线方程是什么?
是否所有的直线都具有点斜式方程?
通过分组讨论的环节,培养了学生们的探究意识和合作精神,从而达到了情感与态度的教学
我本节课说课的内容是直线的点斜式和斜截式方程。
新课标指出,学生是教学的主体。教师要以学生活动为主线。在原有知识的基础上,构建新的知识体系。我将以此为基础从教材地位和内容分析,教学目标分析,重点和难点分析,教法和学法分析,教学过程分析这几个方面加以说明。
一、教材地位和内容分析
直线方程初步体现了解析几何的实质——用代数的知识来研究几何问题。直线作为最常见的几何图形,在生产实践和生活应用中都有着广泛的应用。直线的方程是是解析几何的`基础知识,对后续圆、直线和圆的位置关系、圆锥曲线等内容的学习,无论从知识上还是方法上都有着积极的作用。
二、教学目标分析
1、识记直线的点斜式和斜截式方程,了解其推导过程
2、会根据已知条件熟练求出直线的方程
3、培养学生主动探究知识、合作交流的意识
三、重点与难点分析
重点:会根据已知条件熟练求出直线的方程
难点:直线点斜式方程的推导
四、教法与学法分析
1、教法分析
遵循“教师的主导作用和学生的主体地位相统一的教学规律”,本节课通过教师点拨,启发学生自主探究来达到对知识的发现和接受。
2、学法分析
本节课所面对的是职高二年级的学生,这个年龄段的学生思维活跃,求知欲强,但思维习惯还有待教师引导。本节课从学生原有的知识和能力出发,教师将带领学生创设疑问,通过合作交流,共同探索,寻求解决问题的方法。
五、教学过程分析
根据新课标的理念,我把整个的教学过程分为几个阶段:
1、温故知新
上课前复习特殊角的正切值以及斜率的求法,为研究新课打下基础。
2、创设情境
直线是点的集合,求直线方程实际上就是求直线上点的坐标所满足的一个等量关系。因此在教学中我把探究的过程变成一个问题来进行。
问题:已知一直线过一定点,且斜率为k,则直线是唯一确定的,也就是可求的,怎样求直线L的方程?
3、探求新知
学生带着问题预习,分组讨论,合作交流,共同研究出直线的点斜式方程。教师巡视指导答疑。
在此基础上,找学生在黑板上讲解其推导过程,师生共同点评。
注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的。为以后学习曲线与方程打好基础。教学中让学生感觉到这一点就可以。不必做过多解释。
教师点明:上述方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式方程.
4、深入探究
问题1:X轴所在直线方程是什么?与X轴平行的直线方程是什么?
通过这个问题让学生注意点斜式的特殊情况。
问题2:Y轴所在直线方程是什么?与Y轴平行的直线方程是什么?
通过这个问题让学生注意点斜式直线方程的使用范围:即在斜率存在的情况下才可以使用。
问题3:如果直线L的斜率为K,且与Y轴的交点坐标为(0,b),求直线L的方程。
通过这个问题引出直线的斜截式方程。
教师说明:我们把直线L与Y轴交点(0,b)的纵坐标b叫做直线L在Y轴上的截距。这个方程是由直线的斜率K与它在Y轴上的截距b确定,所以叫做直线的斜截式方程。
注:(1)截距可取任意实数,它不同于距离。
(2)斜截式方程中的K和b有明显的几何意义。
(3)斜截式方程的使用范围和斜截式一样。
5、应用举例
求下列直线方程:
(1)直线经过点P(1,2),倾斜角为
(2)直线经过点、
学生相互讨论,自主完成。教师深入学生中,了解其思路,纠正其错误,并规范书写过程。
6、反馈练习
P53:3、4,B组2
7、课堂小结
让学生谈谈本节课都学习了哪些内容
8、布置作业
必做题:A组2(2)、4
选做题:B组1
我本节课说课的内容是直线的点斜式和斜截式方程。
新课标指出,学生是教学的主体。教师要以学生活动为主线。在原有知识的基础上,构建新的知识体系。我将以此为基础从教材地位和内容分析,教学目标分析,重点和难点分析,教法和学法分析,教学过程分析这几个方面加以说明。
一、教材地位和内容分析
直线方程初步体现了解析几何的实质——用代数的知识来研究几何问题。直线作为最常见的几何图形,在生产实践和生活应用中都有着广泛的应用。直线的方程是是解析几何的基础知识,对后续圆、直线和圆的位置关系、圆锥曲线等内容的学习,无论从知识上还是方法上都有着积极的作用。
二、教学目标分析
1、识记直线的点斜式和斜截式方程,了解其推导过程
2、会根据已知条件熟练求出直线的方程
3、培养学生主动探究知识、合作交流的意识
三、重点与难点分析
重点:会根据已知条件熟练求出直线的方程
难点:直线点斜式方程的推导
四、教法与学法分析
1、教法分析
遵循“教师的主导作用和学生的主体地位相统一的教学规律”,本节课通过教师点拨,启发学生自主探究来达到对知识的发现和接受。
2、学法分析
本节课所面对的是职高二年级的学生,这个年龄段的学生思维活跃,求知欲强,但思维习惯还有待教师引导。本节课从学生原有的知识和能力出发,教师将带领学生创设疑问,通过合作交流,共同探索,寻求解决问题的方法。
五、教学过程分析
根据新课标的理念,我把整个的教学过程分为几个阶段:
1、温故知新
上课前复习特殊角的正切值以及斜率的求法,为研究新课打下基础。
2、创设情境
直线是点的集合,求直线方程实际上就是求直线上点的坐标所满足的一个等量关系。因此在教学中我把探究的过程变成一个问题来进行。
问题:已知一直线过一定点,且斜率为k,则直线是唯一确定的,也就是可求的,怎样求直线L的方程?
3、探求新知
学生带着问题预习,分组讨论,合作交流,共同研究出直线的点斜式方程。教师巡视指导答疑。
在此基础上,找学生在黑板上讲解其推导过程,师生共同点评。
注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的。为以后学习曲线与方程打好基础。教学中让学生感觉到这一点就可以。不必做过多解释。
教师点明:上述方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式方程.
4、深入探究
问题1:X轴所在直线方程是什么?与X轴平行的直线方程是什么?
通过这个问题让学生注意点斜式的特殊情况。
问题2:Y轴所在直线方程是什么?与Y轴平行的直线方程是什么?
通过这个问题让学生注意点斜式直线方程的.使用范围:即在斜率存在的情况下才可以使用。
问题3:如果直线L的斜率为K,且与Y轴的交点坐标为(0,b),求直线L的方程。
通过这个问题引出直线的斜截式方程。
教师说明:我们把直线L与Y轴交点(0,b)的纵坐标b叫做直线L在Y轴上的截距。这个方程是由直线的斜率K与它在Y轴上的截距b确定,所以叫做直线的斜截式方程。
注:(1)截距可取任意实数,它不同于距离。
(2)斜截式方程中的K和b有明显的几何意义。
(3)斜截式方程的使用范围和斜截式一样。
5、应用举例
求下列直线方程:
(1)直线经过点P(1,2),倾斜角为
(2)直线经过点、
学生相互讨论,自主完成。教师深入学生中,了解其思路,纠正其错误,并规范书写过程。
6、反馈练习
P53:3、4,B组2
7、课堂小结
让学生谈谈本节课都学习了哪些内容
8、布置作业
必做题:A组2(2)、4
选做题:B组1
1、教学目标
(1)知识目标:通过师生互动教学,培养学生自编自练自查能力,提高学生应用数学的意识,使学生掌握求直线方程的方法,进行综合能力训练;使学生学会如何根据题目的已知条件恰当选择直线方程形式求解问题。
(2)能力目标: 培养学生在分析问题和解决问题中运用数形结 思想的能力;培学生在分析问题和解决问题中运用转化思想的能力;
(3)德育目标:引导、激发学生积极参与教学,使学生在获得成功的同时,培养学生爱学、乐学情感。通过对数学客观规律的揭示,培养学生透过现象看本质的能力;培养学生辩证唯物主义世界观和方法论。
2、重 点 : 求直线方程的基本方法。
3、难 点:使学生学会如何根据题目的已知条件恰当选择直线方程形式求解问题 。
4、教 具:多媒体辅助教学设备。
5、教学方法:问题情境教学法;启发式教学法;反思式教学法。
6、教学步骤:
(一)课前展示课题与相关知识
(二)由三点坐标联想、发散自编习题并解答。
已知:点A、B、C的坐标分别为(3,4)、(6,0)、(-5,-2)。可联想到:
(1)三角形三边所在直线的方程、三个内角
(2)三角形三边中线、高所在直线的方程
(3)三角形三个内角的角平分线所在方程。
(4)变题1:已知三角形的两个顶点坐标、一条角平分线的方程,求:第三个顶点的坐标与相关直线方程
(5)变题2:已知三角形一个顶点及两条角平分线所在直线方程,求相关量
(6)变题3:已知三角形一个顶点及两条中线所在直线方程,求相关量
(7)变题4:已知三角形两个顶点及一条中线方程,求相关量
(8)变题5:已知三角形一个顶点及两条高所在直线方程
(9)变题6:已知三角形两个顶点及一条高所在直线方程,
(10)变题7:已知三角形两个顶点坐标及垂心坐标,(11)变题8:已知三角形两个顶点坐标及重心坐标,(12)变题9:已知三角形两个顶点坐标及内心坐标
························
(三)课堂小结、作业布置
7、直线方程教法设计的几点说明:
本节是“直线综合复习”第一节课,重点是与学生共同研究求解直线方程的一般方法,在师生的双向交流中,让学生自己考查自己,从而了解学生对知识的理解与掌握程度,灵活调整教学进度,以期达到最佳教学效果。旧知的回顾通过“屏保”让学生提前预览,这样节约了课堂教学时间,从而提高课堂教学效益。
“以学生主体性发展作为教学改革的起点和依据,对原有传统教育中不合理的行为和思维方式进行改革,真正实现教育观念上的转变,实现人的发展的社会化和个性化”是当代教学论的研究主题。本节课,学生在执教者的指导下积极主动的参与学习,从兴趣与学习的内在需求上下工夫,克服学生原有的知识经验、认知结构、情感、意志、性格等制约,发挥学生的自主性与创造性,在已知三点坐标的.前提下,通过执教者的启发与引导,让学生采用猜想、类比、联想等思维方法,运用数形结合、参数、化归等数学思想,适时使用发散思维、逆向思维,通过自编自练自查,力争培养学生的应用数学的意识、提高学生的综合能力。这样,以知识为媒介,以人为中心、以学生素质获得充分、自由、全面地发展原则组织教学。
从发展的角度来看,让学生经历数学知识的发现过程,体验学习过程中的各种感受,比获得知识本身更重要。学生在由三点坐标联系所学知识考查自己时通常会遇到一定的困难,只有让学生处于“愤悱”状态中,通过引导、讨论,获得所需知识或解决了问题时,然后进行必要的发散、逆向思维训练,才能对学生的思维、能力的发展起推进作用。因此,要让学生在游泳中学会游泳,在创造中学会创造。
“教育要面向现代化”已基本形成共识,现代教育技术应用于数学教学正逐渐变成现实。而在数学教学中,使用媒体有效的标志是:“有利于学生的主动参与,有利于揭示教学内容的实质,有利于课堂交流的高效实现,有利于学生思维和技能的训练”。本节课在媒体的选择上,主要运用“几何画板”通过图形对称、旋转变化进行直观教学,联系点线、线线关系解决问题;将“旧知复习”制成“屏幕保护”,在课前、课中展示,既能起温故知新作用,又为课堂教学的深入提供必要的理论保证。本节课多媒体的使用努力以朴素、使用高效为原则,仍以思维训练、能力培养为教学重点。
《直线的点斜式方程》说课稿范文
作为一名优秀的教育工作者,有必要进行细致的说课稿准备工作,借助说课稿可以让教学工作更科学化。快来参考说课稿是怎么写的吧!下面是小编整理的《直线的点斜式方程》说课稿范文,欢迎大家借鉴与参考,希望对大家有所帮助。
老师们同学们大家好,今天我说课的内容是《直线的点斜式方程》,下面我将从教学内容、教法分析、教学目标、教学重难点和教学流程五个方面进行阐述。
一、教材分析:
教材内容,《直线的点斜式方程》选自苏教版数学必修二,其主要内容是直线的点斜式方程和斜截式方程。在本节课的学习中,学生们将迈出探究解析几何学知识的第一步,在“数”和“形”之间建立联系。这为后续学习直线与直线的位置关系等内容,提供了重要的思想方法。
学情分析
高一学生具有一定直观感知能力,也具备一次函数和直线的'斜率等知识储备,但还没有尝试过用代数方法解决几何问题,同时分析论证的能力有待提高,因此在概念的推导过程中可能会比较困难。
二、教学方法:
其次,关于教学方法,新课标的基本理念之一是倡导积极主动、勇于交流的学习方式,因此是本节主要课采用“设问—探索—归纳—定论”的探究式教学,结合分组讨论的环节,营造“教师为主导,学生为主体”的乐学课堂。
三、教学目标:
根据教学内容,本节课的教学目标分为三个维度:
在知识与技能方面:能叙述直线点斜式方程与斜截式方程的概念,能运用点斜式方程和斜截式方程解决问题;
在过程与方法方面:体会直线方程与一次函数之间的关系,培养数形结合、转化化归的数学思想。
在情感、态度和价值观方面:通过独立思考与分组讨论,培养探究意识及合作精神,激发努力思考、获得新知的学习热情。
四、教学重难点:
由于本节课是首次学习直线方程的表示方法,因此把直线的点斜式方程与斜截式方程的概念设置为教学重点。
同时,直线点斜式方程和斜截式方程的推导过程超出了学生对代数和几何知识的原有认知水平,因此教学难点便设定为直线的点斜式方程与斜截式方程的推导。
五、教学过程:
接下来我再来详细介绍一下本节课的教学过程。
1、以旧带新,设问激疑:第一个环节是以旧带新,设问激疑。在回顾之前学习的直线的斜率知识后,我将提出这样一个问题:已知一条直线的斜率及直线上一个点的坐标能否确定直线方程?通过这一问题,激发起学们生独立思考的积极性。
2、探究问题,获得新知:第二个环节是探究问题,获得新知。我在ppt上展示2组直线方程及其图象,并提出几个问题,如图中直线的斜率是什么?图中定点的坐标是什么?如何用已知的斜率和坐标来表示直线?这一过程中,通过问题链来引导学生用已知点的坐标表示直线斜率,再将所得的关系式转化为直线方程,完成对直线点斜式方程的推导。类比相同方法也完成对直线斜截式方程的推导,突破本节课的教学难点。
3、分组讨论,内化提高:
第三个环节是分组讨论,内化提高。我将给出几组针对新知识的细节,具有启发性的问题,如坐标轴所在的直线方程是什么?是否所有的直线都具有点斜式方程?
通过分组讨论的环节,培养了学生们的探究意识和合作精神,从而达到了情感与态度的教学。
尊敬的各位评委、老师:
您们好!
今天我说课的内容是人教版高二第二册(上)第七章第三节第4课时:“点到直线的距离”.
下面根据我写的教案,把我对本节课的教材分析、教学方法和教学用具、教学过程以及教学评价等方面的认识做一个说明.敬请各位专家多提宝贵意见.
一、关于教材分析
1、教材的地位和作用
“点到直线的距离”是在学生学习直线方程的基础上,进一步研究两直线位置关系的一节内容,我们知道两条直线相交后,进一步的量化关系是角度,而两条直线平行后,进一步的量化关系是距离,而平行线间的距离是通过点到直线距离来解决的.此外在研究直线与圆的位置关系、曲线上的点到直线的距离以及解析几何中有关三角形面积的计算等问题时,都要涉及点到直线的距离.所以“点到直线的距离公式”是平面解析几何的一个重要知识点.由于这一节是直线内容的结尾部分,学生已经具备直线的有关知识(如交点、垂直、向量、三角形等),因此,一方面公式的推导成为可能,另一方面公式的推导也是检验学生是否真正掌握所学知识点的一个很好的课题.通过公式推导的获得,可以培养学生分析问题、解决问题的能力,以及自主探究和合作学习的能力.
2教学目标分析
我确定教学目标的依据有以下三条:
(1)教学大纲、考试大纲的要求
(2)新教材的特点
(3)所教学生的实际情况
教学目标包括:知识、能力、德育等方面的内容.
“点到直线的距离公式”是平面解析几何重要的基础知识,也是教学大纲和考试大纲要求掌握的一个知识点.按照大纲“在传授知识的同时,渗透数学思想方法,培养学生数学能力”的教学要求,结合新教材向量的引入,又根据所带班级学生基础和素质教好的情况,我把本节课的教学目标确定为:
(1)让学生理解点到直线距离公式的推导思想,掌握点到直线距离公式及其应用,会用点到直线距离求两平行线间的距离;
(2)通过推导公式方法的发现,培养学生观察、思考、分析、归纳等数学能力;在推导过程中,渗透数形结合、转化(或化归)等数学思想以及特殊与一般的方法;
(3)通过本节学习,引导学生用联系与转化的观点看问题,体验在探索问题的过程中获得的成功感.
3、教学重点:点到直线距离公式的推导和应用.
教学难点:发现点到直线距离公式的推导方法.
二、关于教学方法和教学用具的说明
1、教学方法的选择
(1)指导思想:在“以生为本”理念的指导下,充分体现“教师为主导,学生为主体”.
(2)教学方法:问题解决法、讨论法等.
本节课的任务主要是公式推导思路的获得和公式的推导及应用.我选择的是问题解决法、讨论法等.通过一系列问题,创造思维情境,通过师生互动,让学生体验、探究、发现知识的形成和应用过程,以及思考问题的方法,促进思维发展;学生自主学习,分工合作,使学生真正成为教学的主体.
2、教学用具的选用
在选用教学用具时,我考虑到,在本节课的公式推导和例题求解中思路较多,所以采用了计算机多媒体和实物投影仪作为辅助教具.它可以将数学问题形象、直观显示,便于学生思考,实物投影仪展示学生不同解题方案,提高课堂效率.
三、关于教学过程的设计
“数学是思维的体操”,一题多解可以培养和提高学生思维的灵活性,及分析问题和解决问题的能力.课程标准指出,教学中应注意沟通各部分内容之间的联系,通过类比、联想、知识的迁移和应用等方式,使学生体会知识间的有机联系,感受数学的整体性.课标又指出,鼓励学生积极参与教学活动.为此,在具体教学过程中,把本节课分为以下:“创设情境提出问题——自主探索推导公式——变式训练学会应用——学生小结教师点评——课外练习巩固提高”五个环节来完成.下面对每个环节进行具体说明.
(一)[创设情境提出问题]
1、这一环节要解决的主要问题是:
创设情境,引导学生分析实际问题,由实际问题转化为数学问题,揭示本课任务.同时激发学生学习兴趣,培养学生数学建模能力.
2、具体教学安排:
多媒体显示实例,电信局线路问题,实际怎样解决?能否转化为解析几何问题?
学生很快想到建立坐标系.如何建立坐标系?建系不同,点和直线方程不同,用点的坐标和直线方程如何解决距离问题,由此引出本课课题“点到直线的距离”.
(二)[自主探索推导公式]
1、这一环节要解决的主要问题是:
充分发挥学生的主体作用,引导学生发现点到直线距离公式的推导方法,并推导出公式.在公式的推导过程中,围绕两条线索:明线为知识的学习,暗线为特殊与一般的逻辑方法以及转化、数形结合等数学思想的渗透.
2、具体教学安排:
2.1学生初探解决特例
首先提出问题:怎样用解析几何方法求解点到直线距离?由于字母的运算有难度,引导学生从直线的'特殊情况入手,这样问题比较容易解决.学生应该能想到,如果直线是坐标轴或平行坐标轴的时候问题比较容易解决,给予学生肯定的评价.学生自己完成推导过程,选两名学生进行板演.
2.2师生互动获取思路
特殊情况已经解决,引导学生考虑一般直线的情况.通过学生思考,教师收集得到思路一:过P作PQ ⊥ l于Q点,根据点斜式写出直线PQ方程,由PQ与l联立方程组解得Q点坐标,然后利用两点距离公式求得.
我及时评价这种方法思路自然,是一种解决办法.为了拓展学生思维,我们根据已有的知识和经验,还有什么办法能解决?为此我启发学生,提出问题:
(1)求线段长度可以构造图形吗?
(2)什么图形?如何构造?(学生经过讨论,得到构造三角形,把线段放在直角三角形中.)但是如何构造又是一个难点.
(3)第三个顶点在什么位置?
(4)特殊情况与一般情况有联系吗?
学生通过观察、讨论会提出第三个顶点的不同位置:可能在直线l与x轴的交点M或与y轴交点N;或根据特殊情况的证法提示,过P点作x、y轴的平行线与直线l的交点R、S.或同时做x、y轴平行线.这样就收集到思路二、三、四.
三种思路已经有了,它们的共性是什么?学生能观察出都在三角形中.我继续引导:能不能不构造三角形?而是其它数学相关量?我们刚学习了向量知识,能否用向量知识解决问题呢?(由于在前面学习的向量知识中,向量的模可以表示两点之间的距离,而证明两直线垂直时也已经用到向量知识,法向量又是本节课后阅读材料,本班学生基础和素质较好,在学习直线方向向量时已经布置阅读).
提出问题:线段的长度就是对应向量的模,那么如何求得向量PQ的模呢?根据实际情况提示一方面PQ的方向完全由直线的方向而定(与法向量共线),另一方面PQ的长度又与点P有关,它的长度又如何控制下来?所以有思路五,由师生一起分析,取λλ(A, B )法向量n=,而PQ = n,以下只要求得,就可以得到距离.
2.3分工合作自主完成
学生提出了不同的解决方案,究竟哪种好呢?如果让每位学生都去用不同解法探求,在课堂上时间显然是不允许的,但教学中又要培养学生的运算能力,如何解决这种矛盾呢?现代教育要求学生要有自主学习、合作学习能力,因此我叫学生对五种思路进行分组练习.
在学生求解过程中,我巡视,观看学生解题,了解情况,根据课堂时间的实际情况,选取做好的学生的解题过程用实物投影仪显示.这样不仅能让全体学生看到不同思路的具体解法,还能得出最佳解题方案,接着我展示最佳解题方案的规范步骤.目的让学生有良好的规范的书面表达习惯,起到教师典范的作用.
2.4公式小结概括提升
公式推导出,学生有了成功的喜悦.我也给予了肯定.但是由于公式的结果是一般情况得出的,而对于当A = 0,或B = 0时,点在直线上是否成立,它们与当AB ≠ 0时,点在直线外有什么关系?这并没有验证.而我们要求学生考虑问题要全面,为此我提出提问:①上式是由条件下当AB ≠ 0时得出,对当A = 0,或B = 0时成立吗?②点P在直线l上成立吗?③公式结构特点是什么?用公式时直线方程是什么形式?通过学生的讨论,使学生了解公式适用的范围:任意点、任意直线.同时体现整体认识和分类讨论思想.
依据新课程的理念,教师要创造性地使用教材.在公式的推导过程中,我做了和教材不同的处理方法:(1)先特殊后一般的证法,(2)多角度构造三角形,(3)知识联系,向量解决.目的是让学生在考虑问题时有特殊到一般的意识,符合学生认知规律,使问题的解决循序渐进.向量是新教材内容,是一种很好的数学工具,和解析几何结合应用是现在新教材知识的交汇点.而多角度考虑问题,发散学生思维.
(三)[变式训练学会应用]
1、这一环节解决的主要问题是:
通过练习,熟悉公式结构,记忆并简单应用公式.通过例题的不同解法,进一步让学生体会转化(或化归)的数学思想.
2、具体教学安排:
由学生完成下列练习:
(1)解决课堂提出的实际问题.(学生口答)
(2)求点P0(-1,2)到下列直线的距离:
①3x=2 ②5y=3 ③2x+y=10 ④y=-4x+1
设计说明:练习1的设计解决了上课开始提出的实际问题.练习2的设计故意选特殊直线和非直线方程一般式,主要强调在公式应用时,直线方程是一般式,应用公式的准确性.
例题(3)求平行线2x-7y+8=0和2x-7y-6=0的距离.
我选取的是课本例题,课本只有一种具体点的解法.我通过本节课的学习,让学生对知识从深度和广度上进行挖掘.通过几何画板的演示,让学生直观看到思考问题的方法.除了选择直线上的点,还可以选取原点,求它到两条直线的距离,然后作和.或者选取直线外的点P,求它到两条直线的距离,然后作差.由特殊点到任意点,由特殊直线到任意直线,从而延伸出两平行线间的距离.目的是在整个过程中,让学生注意体会解题方法中的灵活性以及转化等数学思想方法.
(四)[学生小结教师点评]
1、这一环节解决的主要问题和达到的目的是:
通过师生共同小结,巩固所学知识,提炼用到的解决问题的方法,其中蕴涵的数学思想方法,培养学生归纳概括能力.
2、具体教学安排:
本节课小结主要由学生完成知识总结,通过学习知识所体验到的数学思想方法,由学生总结和相互补充,教师适当点评,加以经验总结.
(五)[课外练习巩固提高]
1课本习题7.3的第13题—16题;
2 总结写出点到直线距离公式的多种方法.
设计说明:作业1是课本习题,检查学生所学知识掌握的程度.作业2是根据课堂分析,让学生总结公式推导的方法.除了课堂上想到的方法还可以继续思考,比如在用两点距离公式整体代换等方法,发挥学生学习的自主性和思维的广阔性.
四、关于教学评价的设计
新课程标准提出要加强过程性评价,因而在具体教学过程中,我对于学生的语言与行为的表现,及时给予肯定性的表扬和鼓励;学生思维暴露出问题时及时评价,矫正思维方向,调整教学思路;为了获得后反馈信息,布置作业,通过观察学生完成作业情况,了解学生在知识技能和数学方法方面的收获和不足,指导我今后教学.整个教学评价是在师生互动中完成的.
以上是我对这节课的设计,恳请各位专家和老师批评、指正.
谢谢!
尊敬的各位评委、老师:
您们好!
今天我说课的内容是人教版高二第二册(上)第七章第三节第4课时:“点到直线的距离”.
下面根据我写的教案,把我对本节课的教材分析、教学方法和教学用具、教学过程以及教学评价等方面的认识做一个说明.敬请各位专家多提宝贵意见.
一、关于教材分析
1、教材的地位和作用
“点到直线的距离”是在学生学习直线方程的基础上,进一步研究两直线位置关系的一节内容,我们知道两条直线相交后,进一步的量化关系是角度,而两条直线平行后,进一步的量化关系是距离,而平行线间的距离是通过点到直线距离来解决的.此外在研究直线与圆的位置关系、曲线上的点到直线的距离以及解析几何中有关三角形面积的计算等问题时,都要涉及点到直线的距离.所以“点到直线的距离公式”是平面解析几何的一个重要知识点.由于这一节是直线内容的结尾部分,学生已经具备直线的有关知识(如交点、垂直、向量、三角形等),因此,一方面公式的推导成为可能,另一方面公式的推导也是检验学生是否真正掌握所学知识点的一个很好的课题.通过公式推导的获得,可以培养学生分析问题、解决问题的能力,以及自主探究和合作学习的能力.
2教学目标分析
我确定教学目标的依据有以下三条:
(1)教学大纲、考试大纲的要求
(2)新教材的特点
(3)所教学生的实际情况
教学目标包括:知识、能力、德育等方面的内容.
“点到直线的距离公式”是平面解析几何重要的基础知识,也是教学大纲和考试大纲要求掌握的一个知识点.按照大纲“在传授知识的同时,渗透数学思想方法,培养学生数学能力”的教学要求,结合新教材向量的引入,又根据所带班级学生基础和素质教好的情况,我把本节课的教学目标确定为:
(1)让学生理解点到直线距离公式的推导思想,掌握点到直线距离公式及其应用,会用点到直线距离求两平行线间的距离;
(2)通过推导公式方法的发现,培养学生观察、思考、分析、归纳等数学能力;在推导过程中,渗透数形结合、转化(或化归)等数学思想以及特殊与一般的方法;
(3)通过本节学习,引导学生用联系与转化的观点看问题,体验在探索问题的过程中获得的成功感.
3、教学重点:点到直线距离公式的推导和应用.
教学难点:发现点到直线距离公式的推导方法.
二、关于教学方法和教学用具的说明
1、教学方法的选择
(1)指导思想:在“以生为本”理念的指导下,充分体现“教师为主导,学生为主体”.
(2)教学方法:问题解决法、讨论法等.
本节课的任务主要是公式推导思路的获得和公式的推导及应用.我选择的是问题解决法、讨论法等.通过一系列问题,创造思维情境,通过师生互动,让学生体验、探究、发现知识的形成和应用过程,以及思考问题的方法,促进思维发展;学生自主学习,分工合作,使学生真正成为教学的主体.
2、教学用具的选用
在选用教学用具时,我考虑到,在本节课的公式推导和例题求解中思路较多,所以采用了计算机多媒体和实物投影仪作为辅助教具.它可以将数学问题形象、直观显示,便于学生思考,实物投影仪展示学生不同解题方案,提高课堂效率.
三、关于教学过程的'设计
“数学是思维的体操”,一题多解可以培养和提高学生思维的灵活性,及分析问题和解决问题的能力.课程标准指出,教学中应注意沟通各部分内容之间的联系,通过类比、联想、知识的迁移和应用等方式,使学生体会知识间的有机联系,感受数学的整体性.课标又指出,鼓励学生积极参与教学活动.为此,在具体教学过程中,把本节课分为以下:“创设情境提出问题——自主探索推导公式——变式训练学会应用——学生小结教师点评——课外练习巩固提高”五个环节来完成.下面对每个环节进行具体说明.
(一)[创设情境提出问题]
1、这一环节要解决的主要问题是:
创设情境,引导学生分析实际问题,由实际问题转化为数学问题,揭示本课任务.同时激发学生学习兴趣,培养学生数学建模能力.
2、具体教学安排:
多媒体显示实例,电信局线路问题,实际怎样解决?能否转化为解析几何问题?
学生很快想到建立坐标系.如何建立坐标系?建系不同,点和直线方程不同,用点的坐标和直线方程如何解决距离问题,由此引出本课课题“点到直线的距离”.
(二)[自主探索推导公式]
1、这一环节要解决的主要问题是:
充分发挥学生的主体作用,引导学生发现点到直线距离公式的推导方法,并推导出公式.在公式的推导过程中,围绕两条线索:明线为知识的学习,暗线为特殊与一般的逻辑方法以及转化、数形结合等数学思想的渗透.
2、具体教学安排:
2.1学生初探解决特例
首先提出问题:怎样用解析几何方法求解点到直线距离?由于字母的运算有难度,引导学生从直线的特殊情况入手,这样问题比较容易解决.学生应该能想到,如果直线是坐标轴或平行坐标轴的时候问题比较容易解决,给予学生肯定的评价.学生自己完成推导过程,选两名学生进行板演.
2.2师生互动获取思路
特殊情况已经解决,引导学生考虑一般直线的情况.通过学生思考,教师收集得到思路一:过P作PQ ⊥ l于Q点,根据点斜式写出直线PQ方程,由PQ与l联立方程组解得Q点坐标,然后利用两点距离公式求得.
我及时评价这种方法思路自然,是一种解决办法.为了拓展学生思维,我们根据已有的知识和经验,还有什么办法能解决?为此我启发学生,提出问题:
(1)求线段长度可以构造图形吗?
(2)什么图形?如何构造?(学生经过讨论,得到构造三角形,把线段放在直角三角形中.)但是如何构造又是一个难点.
(3)第三个顶点在什么位置?
(4)特殊情况与一般情况有联系吗?
学生通过观察、讨论会提出第三个顶点的不同位置:可能在直线l与x轴的交点M或与y轴交点N;或根据特殊情况的证法提示,过P点作x、y轴的平行线与直线l的交点R、S.或同时做x、y轴平行线.这样就收集到思路二、三、四.
三种思路已经有了,它们的共性是什么?学生能观察出都在三角形中.我继续引导:能不能不构造三角形?而是其它数学相关量?我们刚学习了向量知识,能否用向量知识解决问题呢?(由于在前面学习的向量知识中,向量的模可以表示两点之间的距离,而证明两直线垂直时也已经用到向量知识,法向量又是本节课后阅读材料,本班学生基础和素质较好,在学习直线方向向量时已经布置阅读).
提出问题:线段的长度就是对应向量的模,那么如何求得向量PQ的模呢?根据实际情况提示一方面PQ的方向完全由直线的方向而定(与法向量共线),另一方面PQ的长度又与点P有关,它的长度又如何控制下来?所以有思路五,由师生一起分析,取λλ(A, B )法向量n=,而PQ = n,以下只要求得,就可以得到距离.
2.3分工合作自主完成
学生提出了不同的解决方案,究竟哪种好呢?如果让每位学生都去用不同解法探求,在课堂上时间显然是不允许的,但教学中又要培养学生的运算能力,如何解决这种矛盾呢?现代教育要求学生要有自主学习、合作学习能力,因此我叫学生对五种思路进行分组练习.
在学生求解过程中,我巡视,观看学生解题,了解情况,根据课堂时间的实际情况,选取做好的学生的解题过程用实物投影仪显示.这样不仅能让全体学生看到不同思路的具体解法,还能得出最佳解题方案,接着我展示最佳解题方案的规范步骤.目的让学生有良好的规范的书面表达习惯,起到教师典范的作用.
2.4公式小结概括提升
公式推导出,学生有了成功的喜悦.我也给予了肯定.但是由于公式的结果是一般情况得出的,而对于当A = 0,或B = 0时,点在直线上是否成立,它们与当AB ≠ 0时,点在直线外有什么关系?这并没有验证.而我们要求学生考虑问题要全面,为此我提出提问:①上式是由条件下当AB ≠ 0时得出,对当A = 0,或B = 0时成立吗?②点P在直线l上成立吗?③公式结构特点是什么?用公式时直线方程是什么形式?通过学生的讨论,使学生了解公式适用的范围:任意点、任意直线.同时体现整体认识和分类讨论思想.
依据新课程的理念,教师要创造性地使用教材.在公式的推导过程中,我做了和教材不同的处理方法:(1)先特殊后一般的证法,(2)多角度构造三角形,(3)知识联系,向量解决.目的是让学生在考虑问题时有特殊到一般的意识,符合学生认知规律,使问题的解决循序渐进.向量是新教材内容,是一种很好的数学工具,和解析几何结合应用是现在新教材知识的交汇点.而多角度考虑问题,发散学生思维.
(三)[变式训练学会应用]
1、这一环节解决的主要问题是:
通过练习,熟悉公式结构,记忆并简单应用公式.通过例题的不同解法,进一步让学生体会转化(或化归)的数学思想.
2、具体教学安排:
由学生完成下列练习:
(1)解决课堂提出的实际问题.(学生口答)
(2)求点P0(-1,2)到下列直线的距离:
①3x=2 ②5y=3 ③2x+y=10 ④y=-4x+1
设计说明:练习1的设计解决了上课开始提出的实际问题.练习2的设计故意选特殊直线和非直线方程一般式,主要强调在公式应用时,直线方程是一般式,应用公式的准确性.
例题(3)求平行线2x-7y+8=0和2x-7y-6=0的距离.
我选取的是课本例题,课本只有一种具体点的解法.我通过本节课的学习,让学生对知识从深度和广度上进行挖掘.通过几何画板的演示,让学生直观看到思考问题的方法.除了选择直线上的点,还可以选取原点,求它到两条直线的距离,然后作和.或者选取直线外的点P,求它到两条直线的距离,然后作差.由特殊点到任意点,由特殊直线到任意直线,从而延伸出两平行线间的距离.目的是在整个过程中,让学生注意体会解题方法中的灵活性以及转化等数学思想方法.
(四)[学生小结教师点评]
1、这一环节解决的主要问题和达到的目的是:
通过师生共同小结,巩固所学知识,提炼用到的解决问题的方法,其中蕴涵的数学思想方法,培养学生归纳概括能力.
2、具体教学安排:
本节课小结主要由学生完成知识总结,通过学习知识所体验到的数学思想方法,由学生总结和相互补充,教师适当点评,加以经验总结.
(五)[课外练习巩固提高]
1课本习题7.3的第13题—16题;
2 总结写出点到直线距离公式的多种方法.
设计说明:作业1是课本习题,检查学生所学知识掌握的程度.作业2是根据课堂分析,让学生总结公式推导的方法.除了课堂上想到的方法还可以继续思考,比如在用两点距离公式整体代换等方法,发挥学生学习的自主性和思维的广阔性.
四、关于教学评价的设计
新课程标准提出要加强过程性评价,因而在具体教学过程中,我对于学生的语言与行为的表现,及时给予肯定性的表扬和鼓励;学生思维暴露出问题时及时评价,矫正思维方向,调整教学思路;为了获得后反馈信息,布置作业,通过观察学生完成作业情况,了解学生在知识技能和数学方法方面的收获和不足,指导我今后教学.整个教学评价是在师生互动中完成的.
以上是我对这节课的设计,恳请各位专家和老师批评、指正.
谢谢!
1、教学目标:
(1)知识目标:通过师生互动教学,培养学生自编自练自查能力,提高学生应用数学的意识,使学生掌握求直线方程的方法,进行综合能力训练;使学生学会如何根据题目的已知条件恰当选择直线方程形式求解问题。
(2)能力目标:培养学生在分析问题和解决问题中运用数形结思想的能力;培学生在分析问题和解决问题中运用转化思想的能力;
(3)德育目标:引导、激发学生积极参与教学,使学生在获得成功的同时,培养学生爱学、乐学情感。通过对数学客观规律的揭示,培养学生透过现象看本质的能力;培养学生辩证唯物主义世界观和方法论。
2、重点:求直线方程的基本方法。
3、难点:使学生学会如何根据题目的已知条件恰当选择直线方程形式求解问题。
4、教具:多媒体辅助教学设备。
5、教学方法:问题情境教学法;启发式教学法;反思式教学法。
6、教学步骤:
(一)课前展示课题与相关知识
(二)由三点坐标联想、发散自编习题并解答。
已知:点A、B、c的坐标分别为(3,4)、(6,0)、(—5,—2)。可联想到:
(1)三角形三边所在直线的方程、三个内角。
(2)三角形三边中线、高所在直线的方程。
(3)三角形三个内角的角平分线所在方程。
(4)变题1:已知三角形的两个顶点坐标、一条角平分线的方程,求:第三个顶点的坐标与相关直线方程。
(5)变题2:已知三角形一个顶点及两条角平分线所在直线方程,求相关量。
(6)变题3:已知三角形一个顶点及两条中线所在直线方程,求相关量。
(7)变题4:已知三角形两个顶点及一条中线方程,求相关量。
(8)变题5:已知三角形一个顶点及两条高所在直线方程。
(9)变题6:已知三角形两个顶点及一条高所在直线方程。
(10)变题7:已知三角形两个顶点坐标及垂心坐标。
(11)变题8:已知三角形两个顶点坐标及重心坐标。
(12)变题9:已知三角形两个顶点坐标及内心坐标。
(三)课堂小结、作业布置(略)
7、直线方程教法设计的几点说明:
本节是“直线综合复习”第一节课,重点是与学生共同研究求解直线方程的一般方法,在师生的双向交流中,让学生自己考查自己,从而了解学生对知识的理解与掌握程度,灵活调整教学进度,以期达到最佳教学效果。旧知的回顾通过“屏保”让学生提前预览,这样节约了课堂教学时间,从而提高课堂教学效益。
“以学生主体性发展作为教学改革的起点和依据,对原有传统教育中不合理的行为和思维方式进行改革,真正实现教育观念上的转变,实现人的发展的'社会化和个性化”是当代教学论的研究主题。本节课,学生在执教者的指导下积极主动的参与学习,从兴趣与学习的内在需求上下工夫,克服学生原有的知识经验、认知结构、情感、意志、性格等制约,发挥学生的自主性与创造性,在已知三点坐标的前提下,通过执教者的启发与引导,让学生采用猜想、类比、联想等思维方法,运用数形结合、参数、化归等数学思想,适时使用发散思维、逆向思维,通过自编自练自查,力争培养学生的应用数学的意识、提高学生的综合能力。这样,以知识为媒介,以人为中心、以学生素质获得充分、自由、全面地发展原则组织教学。
从发展的角度来看,让学生经历数学知识的发现过程,体验学习过程中的各种感受,比获得知识本身更重要。学生在由三点坐标联系所学知识考查自己时通常会遇到一定的困难,只有让学生处于“愤悱”状态中,通过引导、讨论,获得所需知识或解决了问题时,然后进行必要的发散、逆向思维训练,才能对学生的思维、能力的发展起推进作用。因此,要让学生在游泳中学会游泳,在创造中学会创造。
“教育要面向现代化”已基本形成共识,现代教育技术应用于数学教学正逐渐变成现实。而在数学教学中,使用媒体有效的标志是:“有利于学生的主动参与,有利于揭示教学内容的实质,有利于课堂交流的高效实现,有利于学生思维和技能的训练”。本节课在媒体的选择上,主要运用“几何画板”通过图形对称、旋转变化进行直观教学,联系点线、线线关系解决问题;将“旧知复习”制成“屏幕保护”,在课前、课中展示,既能起温故知新作用,又为课堂教学的深入提供必要的理论保证。本节课多媒体的使用努力以朴素、使用高效为原则,仍以思维训练、能力培养为教学重点。
苏教版《式与方程总复习》说课稿
作为一名教学工作者,可能需要进行说课稿编写工作,说课稿有助于提高教师理论素养和驾驭教材的能力。写说课稿需要注意哪些格式呢?下面是小编收集整理的苏教版《式与方程总复习》说课稿,欢迎阅读,希望大家能够喜欢。
一、说教学目标
1、通过复习,使学生进一步体会方程的意义和思想,会用等式的性质解一些简易方程;能列方程解需两、三步计算的实际问题,提高学生用含有字母的式子表示数量关系的能力。
2、通过复习,增强用字母表示数表达和交流信息的意识,渗透代数思想,体会数学知识与现实生活的密切联系,感受用字母表示数的优越性。
3、通过复习,使学生进一步感受用字母表示数与代数领域学习内容的趣味性和挑战性,产生继续探索学习的积极倾向,增强学好数学的信心。
二、说教学重难点
教学重点:进一步掌握用字母表示数的方法,加深理解方程意义和解法,提高学生列方程解决问题的能力,理解式。等式和方程之间的联系,完善认知结构。
教学难点:理解等式与方程的联系与区别,列方程解决实际问题。
三、说设计意图
对本节课的教学,我主要分成下面三大块。
(一)激疑引入
由老师根据学生提供鞋的码数推算出其脚大约是多少厘米,让学生产生疑问。老师适时说明方法以含有字母的`式子出现,唤起学生回忆起用字母可以表示数。
(二)回忆整理
1、用字母可以表示数。
(1)学生口答用字母表示数的例子,其他学生说说用含有字母的式子表示的是什么。
结合具体的例子体会用字母可以表示数量关系。
2、整理方程的相关知识。
(1)由用一组含有字母的式子让学生分一分回忆对方程意义的理解,再由方程回忆与方程有关的知识。
(2)通过练习掌握解方程的依据并回忆等式的性质,及时沟通方程与等式联系和区别,并用简洁的方式表示它们之间的关系,使学生对这一部分知识有一个完整的认识。
(3)运用方程解知识决实际问题,在练习中小结列方程解决实际问题的一般步骤,明确思路和方法。感受列方程解决实际问题的优越性性。
(三)练习运用
设计三种题型:我会连、我会做、我会用,帮助学生查漏补缺,其中重点是运用知识解决实际问题。我会连通过练习让学生掌握用字母表示数的方法,同时让学生进行辨析。我会做并没要求学生一定用方程解,而是自主选择方法进行解答,使学生出现错误,进而感受用方程解决实际问题的优越性。我会用主要是运用所学知识解决生活中的数学问题,又是与课前问题首尾呼应同时又能感受到学习的乐趣。
反思:上复习课激情不够高,节奏不强;没有能很好地体现学生的自主性;问题不够精练,有些罗嗦。
一、说教材
1、教材地位和作用
《利用化学方程式的简单计算》是人教版九年级化学上册第五单元课题3的内容,上承质量守恒定律及化学方程式,是化学中定量研究的真正体现和具体应用,也是化学计算的重要组成和基础,并能为后面有关含杂质等计算做好准备,故学好本节内容知识极为重要。
2、教学目标分析根据学生的实际情况和已有的基础,结合教材和课标,本人确定本课教学目标为:
(1)、知识目标①、初步掌握利用化学方程式计算的步骤和方法;②、通过化学方程式中物质间的质量比,初步理解反应物、生成物之间的质和量的关系。
(2)、能力目标通过对具体例题的计算,培养学生进行化学计算和解决实际问题的能力。
(3)、情感态度目标①、培养学生的爱国主义情感;②、培养学生严谨求实、勇于创新、敢于实践的科学精神。
3、教学重点和难点
(1)、重点:根据化学方程式计算的步骤;(2)、难点:物质之间量的关系。
二、说教法好的教学方法,能使学生易于接受,乐于学习,能有效地提高教学质量,可达到事半而功倍的效果。因此选择好的教法,是我们教师所追求的,本节课本人所采用的教法是:以学生的主动探究为主,教师的引导点拨为辅,让学生在对例题进行自我解答,经过讨论、对比、辨析、交流和小结的基础上完成教学,使学生在整个教学过 程中,自己不知不觉地获取了新的知识和掌握了新的技能,并且利用多媒体展示出具体的真实情景素材激发学生的求知欲,再用学生竞赛形式来充分调动学生的学习 积极性,使学生改变了 “要我学”转化为“我要学”的状态,符合新课改理念和要求,有效地提高了课堂效果和教学质量。
三、说学法教学矛盾的主要方面是学生的学,学是中心,会学是目的。教会学生如何学,是我们教师的职责,是培养学生能力的关键。本节课应充分地让学生动手、动口、动 脑,让他们自己去观察、讨论、比较、分析、表达、交流、反思等,培养其自主学习能力和勇于探索、创新的精神。这样既增加了学生的参与机会,增强了学生的参 与意识,又同时教给学生获取知识的途径和思考问题的方法,让学生产生一种成功感,从而提高学生学习化学的兴趣。
四、说教学程序
1、情境激趣,温故知新。(利用多媒体显示“神舟五号”升空场面):“神舟五号”用长征系列火箭发射升空时,若火箭燃料是液氢,助燃剂是液氧,当火箭被点火时会发生什么反应,写出化学方程式。
一、说教材:
1、教材地位和作用
《利用化学方程式的简单计算》是人教版九年级化学上册第五单元课题3的内容,上承质量守恒定律及化学方程式,是化学中定量研究的真正体现和具体应用,也是化学计算的重要组成和基础,并能为后面有关含杂质等计算做好准备,故学好本节内容知识极为重要。
2、教学目标分析
根据学生的实际情况和已有的基础,结合教材和课标,本人确定本课教学目标为:
(1)、知识目标
①、初步掌握利用化学方程式计算的步骤和方法;
②、通过化学方程式中物质间的质量比,初步理解反应物、生成物之间的质和量的关系。
(2)、能力目标
通过对具体例题的计算,培养学生进行化学计算和解决实际问题的能力。
(3)、情感态度目标
①、培养学生的爱国主义情感;
②、培养学生严谨求实、勇于创新、敢于实践的科学精神。
3、教学重点和难点
(1)、重点:根据化学方程式计算的步骤;
(2)、难点:物质之间量的关系。
二、说教法
好的教学方法,能使学生易于接受,乐于学习,能有效地提高教学质量,可达到事半而功倍的效果。因此选择好的教法,是我们教师所追求的,本节课本人所采用的教法是:以学生的主动探究为主,教师的引导点拨为辅,让学生在对例题进行自我解答,经过讨论、对比、辨析、交流和小结的基础上完成教学,使学生在整个教学过程中,自己不知不觉地获取了新的知识和掌握了新的技能,并且利用多媒体展示出具体的真实情景素材激发学生的求知欲,再用学生竞赛形式来充分调动学生的学习积极性,使学生改变了“要我学”转化为“我要学”的状态,符合新课改理念和要求,有效地提高了课堂效果和教学质量。
三、说学法
教学矛盾的主要方面是学生的学,学是中心,会学是目的。教会学生如何学,是我们教师的职责,是培养学生能力的关键。本节课应充分地让学生动手、动口、动脑,让他们自己去观察、讨论、比较、分析、表达、交流、反思等,培养其自主学习能力和勇于探索、创新的精神。这样既增加了学生的参与机会,增强了学生的参与意识,又同时教给学生获取知识的途径和思考问题的方法,让学生产生一种成功感,从而提高学生学习化学的兴趣。
四、说教学程序
1、情境激趣,温故知新。
(利用多媒体显示“神舟五号”升空场面):“神舟五号”用长征系列火箭发射升空时,若火箭燃料是液氢,助燃剂是液氧,当火箭被点火时会发生什么反应,写出化学方程式。
(说明:用我国发射“神舟五号”的真实情境进行教学,既可提高学生的学习兴趣,同时又可增强学生的爱国情感,产生自豪感。)
2、激疑解答,引入新课。
(师):若你是火箭推进器的设计师,当确定升空的火箭需要液氢100Kg时,你会在火箭助燃剂仓中填充多少千克的液氧来满足这些液氢完全燃烧?并把你们的解题依据、思路、过程等表达出来,是否符合你的思维过程?
(生):思考、讨论、交流、表达。
(说明:根据情境素材提出相关问题,能使学生体验到知识与技能的实用性,同时很好地激发学生的求知欲;并且利用上面化学方程式信息过渡到利用化学方程式进行计算,顺理成章,学生易于接受,同时培养学生的自动探究能力。)
3、阅读比较,自主探究。
(师):如何完整地表达你的.解题过程?并引导学生阅读课本P100
例题1和例题2,再比较你上面解题的思路、过程跟例题1是否一致?有哪些不足之处?请改正并按例题2的格式书写出来。
(生):分组讨论,进行交流,并改正解题过程及格式。
(师):你清楚了解题步骤和要求,是否就能将题目解答正确呢?在书写步骤之前应将重点放在什么地方?如何做到?
(生):讨论、回答。
(说明:充分发挥学生的主体地位和作用,让学生通过自己动手动脑去探索学习获取知识会比教师的说教式的教学更加深刻和牢固,对知识的理解、掌握得更加全面。)
4、改错辨析,加深认识。
(师):(多媒体显示):中国登山协会为纪念我国首次攀登珠穆朗玛峰成功50周年,再次组织攀登珠峰活动,阿旺扎西等一行登山运动员冲顶时消耗自带的液氧4.8kg。求:若这些氧气用高锰酸钾为原料制取,需多少千克高锰酸钾?
解:制取4.8kgo2,需要完全分解xkgKmno4。
Kmno4===K2mno4+mno2+o2↑
15832
xkg4.8
36/xkg=32/4.8
x=79
答:需要79kgKmno4。
(生):组际竞赛:看谁找得错误多、快、准,更正得快。
(说明:用竞赛形式改正错误之处,可加强学生对解题过程规范性的认识和理解,同时增加学习乐趣。)
5、实践反馈,加强应用。
(多媒体显示练习):1、登山运动员能用Kmno4为原料制取氧气吗?请说明理由。
2、某地工业电解铝厂,利用氧化铝制取单质铝的化学方程式为2Al2o3=通电=4Al+3o2↑,电解10tAl2o3最多可生产多少吨Al?同时生产多少吨o2?
(说明:通过练习加强学生对知识的应用,使学生学于致用,有利与提高学生应用知识解决问题的能力。)
6、小结评价,提高认识。
请学生谈一谈学完本节课后的收获和启示。
7、拓展创新,巩固新知。(多媒体显示:)
(1)、已知Zn、mg与稀H2so4反应化学方程式为:Zn+H2so4==Znso4+H2↑、mg+H2so4==mgso4+H2↑,相同质量的锌和镁分别与足量的稀H2so4,产生H2质量比上多少?(有何规律?)
(2)、饲养观赏鱼,可以陶冶人的情操,增进人们对生活的热爱,空运观赏鱼,必须密封,为了解决鱼的吸氧问题,可在水中加入过氧化钙(化学式cao2),它在水中的反应是:2ca+2H2o==2ca(oH)2+o2↑。一位养鱼爱好者欲测定所用过的过氧化钙样品中过氧化钙的质量分数,做了如下实验:称取样品2.0g,加到足量的水中,生成了0
.224Lo2(密度为1.43g/L)。试计算:①所用样品中过氧化钙的质量。②样品中过氧化钙占样品的质量的百分数(纯度)?
(说明:加强拓展创新性习题的练习,可使学生开阔眼界,加深对知识的应用和理解,同时可增强学生的创新意识,培养学生的创造能力。)
8、作业布置,自我评价。完成课本P101习题中的练习。
五、说板书
本人所设计的板书力求一目了然,重点突出,能使学生留下深刻的印象,便于记忆,并且能给人一种美的感受。板书设计如下:
课题3利用化学方程式的简单计算
一、步骤:二、范例:(例题1)
1、设:(未知量)解:设可得氧气的质量为x。
2、写:(化学方程式)2Kmno4=△=K2mno4+mno2+o2↑
3、标:(质量比、已知量、未知量)31632
4、列:(正比式)6gx
5、解:(求解)316/6g=32/x
6、答:(写答)x=0.6g
&n
bsp;答:可得0.6g氧气。
一、教材分析
《离子反应,离子方程式》属于高一课本第三章第五节,这一节我把它分成二课时。第一课时讲离子反应,离子反应发生的条件。第二课时讲离子方程式及其书写方法。把难点分散,重点突出。学好这一内容,能揭示溶液中化学反应的本质。既巩固了初中学过的电离初步知识,又为第三册电解质溶液的学习奠定了一定的基础,并且正确而又熟练地书写离子方程式,是学生必须掌握的一项基本技能。它还是历年高考的热点,在高考中重现率达标100%。
本课时的教学目的:
知识方面:1、掌握离子方程式的含义。
2、学会离子方程式书写方法。
能力方面:1、培养学生利用实验分析,解决问题的能力。
2、培养学生创新思维能力。
3、培养学生使用对比,归纳,总结的研究方法。
思想教育方面:培养学生能通过现象看本质,找出事物变化规律。认识到事物变化过程既有普遍性又有特殊性。
之所以这样确定教学目的,一方面是根据教材和教学大纲的要求,另一方面是想在学法上给学生以指导,使学生的能力得到提高。
本节课的教学重点和难点:离子方程式的书写方法
二、教法方面
本课依教材特点,采用螺旋式发展,循序渐进,探究式、问题讨论式教学。具体解决重、难点的方法如下:
1、“由旧引新,以旧带新”的方法:学生新知识的获得,必须由浅入深,由远及近,由已知到未知,循序渐进。如果学生对新知识课缺乏必要的知识基础,就难以理解新知识。由于上节课已学习了离子反应以及发生条件,根据学生的实际情况及培养目标。我将这部分知识的学习采用探究式教学,由实验复习旧知识,引出新概念,由表及里地揭示反应的实质,使学生深刻地掌握离子方程式的定义。并通过关键词的点拔,巩固了定义的外延和内涵。
2、正确理解离子方程式的书写原则:初学者按课本上四个步骤书写,第二步“改”是教学中的难点。可采用问题讨论式教学,使学生正确理解书中给离子方程式下定义“用实际参加反应离子的符合来表示离子反应的式子叫做离子方程式”。从而得出书写离子方程式实际上是依据该物质在反应体系中的主要存在形式来决定写成离子形式,还是写成化学式,而不是用实际参加反应的离子的符号来表示。
3。课堂上要有计划地留出充分的时间给学生进行练习:在此过程中注意培养学生运用概念分析问题和解决问题的能力。在练习中让学生亲身体会到强酸、强碱、可溶性的盐要写离子形式,再由学生设计实验,分析实验来巩固知识提高能力。把一堂理论转化为生动,形象的一堂以实验为主的新课。既强化了重点又突破了难点,实现教学目标。
三、学法方面
(1)在本节教学中我着重突出了教法对学法的引导。在教学双边活动过程中,引导学生用旧知识为指路灯来探寻新知识,层层深入掌握新知识。使学生基础知识应该扎扎实实巩固。在学习过程培养了分析,对比,归纳,总结的能力。
(2)这节课我尽可能用实验来引出问题,解决问题。目的在于使学生明确实验在化学学习中的重要性,使他们注重自己对实验的观察,分析,设计及动手操作能力的培养。
(3)通过授课过程中一系列发散性的设问,使学生明确理论对实践的指导作用。在学习过程中体会到学好理论重在要去分析问题,解决问题,才能将知识真正灵活地融入脑海之中。
四、教学程序
1、谈谈实验的导入:由于上节课已经学习了离子反应以及发生条件。这部分知识对于高一学生来讲并不难,若从定义上复习会使学生感到乏味。但对于溶液中反应本质的深入,他们还非常薄弱。故做以下两组实验:
a、盐酸,氯化钠溶液和硝酸银溶液反应b。盐酸,硝酸溶液和碳酸钠溶液反应
提问:(1)为什么会产生同一种沉淀,或产生同一种气体?
(2)是离子反应?
(3)是什么离子参加反应?
结论:Ag++cl—=Agcl↓co32—+2H+=H2o+co2↑
教师指出上述两条就是离子方程式。引出离子方程式的定义,指出定义中的关键字“用实际参加反应离子的符号”。并且引导学生得出离子方程式不仅表示某一定物质间的某个反应,而且表示了所有同一类型的离子反应。这样导入课使学生对定义有本质理解。把学生引入主动学习的情景之中,产生了学习的动力。
2、谈谈离子方程式书写原则:初学者按课本上四个步骤书写,第二步“改”是教学中的难点。书中给离子方程式定义“用实际参加反应离子的符号来表示离子反应的式子叫做离子方程式”。而书写第二步指出“把易溶于水,易电离的物质写成离子形式;难溶的物质或难电离的物质以及气体等仍用化学式表示”。这就出现了一个问题:在离子反应中难溶的物质或难电离的物质实际参加反应的微粒是什么?事实上无论是难溶的物质或难电离的物质,只要是酸碱盐电解质,溶于水的部分都能电离出自由移动的离子,它们之间的反应是离子之间的反应。例:caco3和盐酸溶液反应,caco3(s)=ca2++co32—(溶解平衡)co32—+2H+=H2o+co2↑随着反应的进行不断促使碳酸钙的溶解,电离平衡向右移动,使反应趋于完成。但这样书写跟课本要求的方法相矛盾。在教学中如何解决这个矛盾,是这节课教学上的一个升华点,也是书写离子方程式的关键。故在教学中可这样引导(1)碳酸钙在盐酸溶液中发生的反应是离子之间的反应,参加微粒是离子。(2)书写离子方程式实际上是依据该物质在反应体系中的主要存在形式。来决定写成离子形式还是写成化学式,而不是用实际参加反应的.离子的符号来表示。碳酸钙在溶液中主要以固体形式存在,故用化学式。这样同学很容易理解和接受。这是不防提出这样一个问题(1)澄清石灰水中加入盐酸离子方程式如何写?(2)石灰乳中加入盐酸离子方程式如何写?根据微溶物主要存在形式,在稀溶液中以离子状态,在浊液状态或固态时就写化学式。这时为了使学生所掌握知识具体化,师生可共同讨论归纳出:难溶的物质,难电离的物质(弱酸,弱碱,水),氧化物,单质,气体等用化学式表示。第四步“查”也不容忽视,可提问学生应查什么?可用幻灯片:判断正误(1)fe2++cl2=fe3++2cl—(2)2mno4—+7H2o2+6H+=2mn2++6o2↑+10H2o这两条方程式学生还没学过,但能用现有知识去判断,高而可攀,使学生既感到自己的不足,又获得学习的乐趣。查:(1)质量守衡(2)电荷守衡(3)电子得失守衡(是氧化还原反应)。这种先激发学生的兴趣。让学生从具体问题上找出答案,充分体现学生在课堂上的“主体”地位。
3、谈谈练习选用:由于学生刚刚掌握了离子方程式书写方法,为了巩固知识并能训练学生的创造性思维,我安排这样一组问题:(1)Ba(oH)2溶液能否导电?(2)能否用实验来证明?学生一方面进行知识回顾,另一方面进行思维发散。让学生提出几个方案,分析,比较。然而展示实验装置并演示小灯炮发亮。(3)在此Ba(oH)2溶液中加入什么物质能使电灯熄灭?这一问题不仅巩固离子反应知识,而且使创造性思维进一步得到训练。师生共同分析提出的几个方案,如用盐酸,硫酸,硫酸钠。(4)用什么方法加入?倒入?滴入?然而按课本P74练习6实验装置并演示,请学生观察现象并分别写出离子方程式。提出盐酸,硫酸和氢氧化钡反应的离子方程式能否都用“H++oH—=H2o”来表示?(5)写出下列反应的离子方程式:(A)氨水和硫酸反应(B)浓盐酸和二氧化锰反应(c)碳酸氢钠和盐酸反应。利用这一系列扩散性问题,让学生产生多种独创性的想法,改变习惯性单纯吸收,巩固了知识,提高了创新能力,在学习中获得乐趣。
4、谈谈总结:对于离子方程式定义的总结,可与电离方程式定义,化学方程式定义进行对比,使定义进一步深化。对于离子方程式的书写方法,着重是第二步和第四步一些书写过程中的注意点。说明并不是所有电解质之间都能用离子方程式来表示,不在溶液或熔融状态的反应就不能表示。如浓硫酸和固体氯化钠反应,浓硫酸和铜反应,固体氯化铵和熟石灰反应。体现事物发展规律中既有普遍性又有特殊性的辩证唯物主义思维。
5、谈谈应用:离子反应在自然界中普遍存在,如:分离分析,水的净化,电镀,医药,染料,“三废”处理和生命活动中都有存在。中学阶段主要应用在离子的分离和检验。如:硫酸根离子的检验和氯离子的检验。
五、板书设计(用幻灯片)
离子方程式及其书写方法
一、离子方程式
1、定义:用实际参加反应离子的符号来表示离子反应的式子叫做离子方程式。
2、意义:不仅表示某一物质间的某个反应,而且表示了所有同一类型的离子反应。